Parkinson's disease is thought to be caused by aggregation of the intrinsically disordered protein, α-synuclein. Two amyloidogenic variants, A30P, and E46K familial mutants were investigated by wide-line H NMR spectrometry as a completion of our earlier work on wild-type and A53T α-synuclein (Bokor M. et al. WT and A53T α-synuclein systems: melting diagram and its new interpretation. Int. J. Mol. Sci.2020, 21, 3997.). A monolayer of mobile water molecules hydrates A30P α-synuclein at the lowest potential barriers (temperatures), while E46K α-synuclein has here third as much mobile hydration, insufficient for functionality. According to wide-line H NMR results and secondary structure predictions, E46K α-synuclein is more compact than the A30P variant and they are more compact than the wild type (WT) and A53T variants. Linear hydration potential barrier sections of A30P α-synuclein shows one and E46K shows two slopes. The different slopes of the latter between potential barriers and reflect a change in water-protein interactions. The 31-32% homogeneous potential barrier distribution of the protein-water bonds refers to a non-negligible amount of secondary structures in all four α-synuclein variants. The secondary structures detected by wide-line H NMR are solvent-exposed α-helices, which are predicted by secondary structure models. β-sheets are only minor components of the protein structures as three- and eight-state predicted secondary structures are dominated by α-helices and coils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178613PMC
http://dx.doi.org/10.1021/acsomega.2c00477DOI Listing

Publication Analysis

Top Keywords

wide-line nmr
16
secondary structure
12
e46k α-synuclein
12
secondary structures
12
α-synuclein
9
structure predictions
8
a30p e46k
8
a53t α-synuclein
8
a30p α-synuclein
8
potential barriers
8

Similar Publications

Wide-line H NMR is an efficient spectroscopic method to determine the disorder tendency of a protein. It directly measures the properties of the hydration shell of proteins, delivering exact and measurable values of their disorder/order content. A comparison is performed between several globular and disordered proteins.

View Article and Find Full Text PDF

Understanding the membrane dynamics of complex systems is essential to follow their function. As molecules in membranes can be in a rigid or mobile state depending on external (temperature, pressure) or internal (pH, domains, etc.) conditions, we propose an in-depth examination of NMR methods to filter highly mobile molecular parts from others that are in more restricted environments.

View Article and Find Full Text PDF

Parkinson's disease is thought to be caused by aggregation of the intrinsically disordered protein, α-synuclein. Two amyloidogenic variants, A30P, and E46K familial mutants were investigated by wide-line H NMR spectrometry as a completion of our earlier work on wild-type and A53T α-synuclein (Bokor M. et al.

View Article and Find Full Text PDF

The nonahydridorhenate dianion ReH is a unique rhenium polyhydride complex due to its remarkably high coordination number; however, its detailed polytopal rearrangement process in either solution or crystal is so far unclear. In this work, our quantum chemical calculations have identified two previously unreported fluxional mechanisms for the ReH dianion in the KReH crystal: three-arm turnstile rotation and circle dance mechanism. These two polytopal rearrangements in the crystal offer an alternative interpretation to the pulse and wide-line NMR spectra (Farrar et al.

View Article and Find Full Text PDF

Direct polarization using a single pulse is the simplest excitation scheme in nuclear magnetic resonance (NMR) experiments, capable of quantifying various compositions in many materials applications. However, this single-pulse excitation generally gives rise to NMR spectra with a severely distorted baseline due to the background signals arising from probe components and/or due to the radio-frequency (RF) acoustic ringing, especially in low-γ nuclei and wide-line NMR. In this work, a triple-pulse excitation scheme is proposed to simultaneously suppress the background signals and eliminate the RF acoustic ringing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!