Coal remains the largest contributor to the energy structure of China. However, coal production is frequently threatened by groundwater inrush accidents caused by hydraulically conductive faults. Despite the threat of such accidents, research on methods for evaluating fault hydraulic conductive property without hydraulic tests has seldom been conducted. Many faults exist in coal mines in Shandong, China. However, due to economic and technical limitations, hydrological tests are rarely performed and can be performed on only a few faults. The hydraulic conductive property of many faults is unknown, which has prevented serious groundwater inrush accidents and casualties from being avoided. Using accessible geological exploration data, we propose a method for evaluating fault hydraulic conductive property in the Jining coalfield, Shandong, China. Mudstone smearing, lithologic contact relations on the fault plane, geostress, water pressure, plastic deformation of mudstone, and the argillaceous content of the fault zone were selected as factors, and six quantitative indicators were proposed: the shale gouge ratio (SGR), lithologic juxtaposition diagram (LJD), fault closure coefficient (FCC), water pressure coefficient (WPC), mudstone deformation coefficient (MDC), and shale smear factor (SSF). The fuzzy analytic hierarchy process (FAHP) was applied to calculate the weights and establish lateral and vertical hydraulic conductive property (L and V) evaluation models for faults. The fault hydraulic conductivities were then classified as weak, medium, or strong. The hydrochemical experiments and the limited number of exposed faults were used for validation. Hence, the evaluation models were considered effective at determining the hydraulic conductive property of faults in the Jining coalfield, China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178719 | PMC |
http://dx.doi.org/10.1021/acsomega.2c00160 | DOI Listing |
Environ Technol
January 2025
School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, People's Republic of China.
This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.
View Article and Find Full Text PDFJ Mol Model
January 2025
Nanjing Hydraulic Research Institute, Shanghai, China.
Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Yellow Basin Ecological Protection and Restoration, Zhengzhou, China.
Vegetation productivity and ecosystem carbon sink capacity are significantly influenced by seasonal weather patterns. The time lags between changes in these patterns and ecosystem (including vegetation) responses is a critical aspect in vegetation-climate and ecosystem-climate interactions. These lags can vary considerably due to the spatial heterogeneity of vegetation and ecosystems.
View Article and Find Full Text PDFSci Rep
January 2025
Guizhou Mining Safety Science Research Institute Co., Ltd, Guiyang, 550025, China.
To enhance the safety of coal mining operations and improve the efficiency of gas extraction, hydraulic flushing technology has been widely used in low permeability coal seams. This study aims to investigate the mechanism of hydraulic flushing by conducting experiments focusing on four aspects: sample strength, punching pressure, punching position and vibration direction. The results show that an increase in hydraulic flushing pressure leads to a deeper impact groove, whereas higher sample strength results in a shallower groove.
View Article and Find Full Text PDFSci Rep
January 2025
College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, 210098, China.
Internal instability of embankment soils under seepage can occur in two distinct ways: suffusion and suffosion. Suffusion involves the removal of fine particles from the matrix without causing significant disturbance to the soil skeleton, while suffosion is characterized by the movement of fine particles accompanied by skeleton collapse or deformation. In terms of dam safety, suffosion poses a greater threat than suffusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!