An operationally simple, open-air, and efficient light-mediated Minisci C-H alkylation method is described, based on the formation of an electron donor-acceptor (EDA) complex between nitrogen-containing heterocycles and redox-active esters. In contrast to previously reported protocols, this method does not require a photocatalyst, an external single electron transfer agent, or an oxidant additive. Achieved under mildly acidic and open-air conditions, the reaction incorporates primary-, secondary-, and tertiary radicals, including bicyclo[1.1.1]pentyl (BCP) radicals, along with various heterocycles to generate Minisci alkylation products in moderate to good yields. Additionally, the method is exploited to generate a stereo-enriched, hetereoaryl-substituted carbohydrate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116295 | PMC |
http://dx.doi.org/10.1039/d2sc01363k | DOI Listing |
J Org Chem
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
A highly efficient Minisci reaction of pyrimidines with alkyl radical generated from visible-light-induced activation of simple C(sp)-H feedstocks such as (cyclo)alkanes, ethers, alcohols, esters, and amides is reported. A mechanistic study revealed that alkyl radical was generated via hydrogen atom transfer (HAT) of C(sp)-H with dichloromethyl radical (·CHCl), which was generated by photoreduction of chloroform.
View Article and Find Full Text PDFSmall
November 2024
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
The natural process of photosynthesis involves a series of consecutive energy transfers, but achieving more steps of efficient energy transfer and photocatalytic organic conversion in artificial light-harvesting systems (ALHSs) continues to pose a significant challenge. In the present investigation, a range of ALHSs showcasing a sophisticated three-step energy transfer mechanism is designed, which are meticulously crafted using pillar[5]arene (WP[5]) and p-phenylenevinylene derivative (PPTPy), utilizing host-guest interactions as energy donors. Three distinct types of fluorescent dyes, namely Rhodamine B (RhB), Sulforhodamine 101 (SR101), and Cyanine 5 (Cy5), are employed as acceptors of energy.
View Article and Find Full Text PDFOrg Lett
October 2024
Warren Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States.
The first syntheses of the natural products alpinidinoid C and officinine B are reported. These unusual dimeric diarylheptanoids were accessed from a 3-substituted pyridine intermediate via a blue-light-mediated, triple-Minisci-type alkylation. Very few reports utilize -(acyloxy)phthalimides (NAPs) in the construction of natural products, and the syntheses reported herein highlight the power of this methodology toward the orthogonal construction of highly substituted arenes.
View Article and Find Full Text PDFLangmuir
September 2024
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
Supramolecular polymers, with their specific functional units and structures, can effectively enhance the absorption and utilization of light energy, thereby facilitating more efficient photocatalytic organic reactions. In the present work, we constructed a supramolecular polymer consisting of benzothiazole derivatives (BTBP) and cucurbit[8]uril (CB[8]). The BTBP monomer, known for its unique chemical structure and properties, has been found to exhibit a remarkable capability in generating singlet oxygen (O).
View Article and Find Full Text PDFChem Sci
August 2024
State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
With advances in organoboron chemistry, boron-centered functional groups have become increasingly attractive. In particular, alkylboron species are highly versatile reagents for organic synthesis, but the direct generation of alkyl radicals from commonly used, bench-stable boron species has not been thoroughly investigated. Herein, we describe a method for activating C-B bonds by nitrogen- or oxygen-radical transfer that is applicable to alkylboronic acids and esters and can be used for both Michael addition reactions and Minisci reactions to generate alkyl or arylated products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!