We investigated the contribution of atmospheric new particle formation (NPF) and subsequent growth of the newly formed particles, characterized by high concentrations of fine particulate matter (PM). In addition to having adverse effects on visibility and human health, these haze particles may act as cloud condensation nuclei, having potentially large influences on clouds and precipitation. Using atmospheric observations performed in 2019 in Beijing, a polluted megacity in China, we showed that the variability of growth rates (GR) of particles originating from NPF depend only weakly on low-volatile vapor - highly oxidated organic molecules (HOMs) and sulphuric acid - concentrations and have no apparent connection with the strength of NPF or the level of background pollution. We then constrained aerosol dynamic model simulations with these observations. We showed that under conditions typical for the Beijing atmosphere, NPF is capable of contributing with more than 100 μg m to the PM mass concentration and simultaneously >10 cm to the haze particle (diameter > 100 nm) number concentration. Our simulations reveal that the PM mass concentration originating from NPF, strength of NPF, particle growth rate and pre-existing background particle population are all connected with each other. Concerning the PM pollution control, our results indicate that reducing primary particle emissions might not result in an effective enough decrease in total PM mass concentrations until a reduction in emissions of precursor compounds for NPF and subsequent particle growth is imposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119031 | PMC |
http://dx.doi.org/10.1039/d1ea00096a | DOI Listing |
Viruses
December 2024
Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
Protein phosphorylation is a crucial regulatory mechanism in cellular homeostasis. The human cytomegalovirus (HCMV) incorporates protein phosphatase 1 (PP1) into its tegument, yet the biological relevance and mechanisms of this incorporation remain unclear. Our study offers the first characterization of the PP1 interactome during HCMV infection and its alterations.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.
Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.
Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.
Pharmaceutics
December 2024
College of Pharmacy, Xinjiang Second Medical College, Karamay 834000, China.
, an active component of Arnebia euchroma (Royle) Johnst., has remarkable pharmacological effects, particularly in its anti-tumour activity. Nonetheless, the specific targets and mechanisms of action remain to be further explored.
View Article and Find Full Text PDFPharmaceutics
November 2024
College of Pharmacy and Research Institute for Drug Development, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea.
This study investigates the impact of supercritical antisolvent (SAS) process parameters on the particle formation of telmisartan, a poorly water-soluble drug. A fractional factorial design was employed to examine the influence of the SAS process parameters, including solvent ratio, drug solution concentration, temperature, pressure, injection rate of drug solution, and CO₂ flow rate, on particle formation. Solid-state characterizations of the SAS process particles using XRD and FT-IR confirmed their amorphous nature.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Prosthodontics, Medical University of Warsaw, 02-097 Warsaw, Poland.
Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!