Individuals with autism typically experience a range of symptoms, including abnormal sensory sensitivities. However, there are conflicting reports on the sensory profiles that characterize the sensory experience in autism that often depend on the type of stimulus. Here, we examine early auditory processing to simple changes in pitch and later auditory processing of more complex emotional utterances. We measured electroencephalography in 24 adults with autism and 28 controls. First, tones (1046.5Hz/C6, 1108.7Hz/C#6, or 1244.5Hz/D#6) were repeated three times or nine times before the pitch changed. Second, utterances of delight or frustration were repeated three or six times before the emotion changed. In response to the simple pitched tones, the autism group exhibited larger mismatch negativity (MMN) after nine standards compared to controls and produced greater trial-to-trial variability (TTV). In response to the prosodic utterances, the autism group showed smaller P3 responses when delight changed to frustration compared to controls. There was no significant correlation between ERPs to pitch and ERPs to prosody. Together, this suggests that early auditory processing is hyper-sensitive in autism whereas later processing of prosodic information is hypo-sensitive. The impact the different sensory profiles have on perceptual experience in autism may be key to identifying behavioral treatments to reduce symptoms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174755 | PMC |
http://dx.doi.org/10.3389/fpsyt.2022.844830 | DOI Listing |
J Exp Psychol Gen
January 2025
Department of Experimental Psychology, Helmholtz Institute, Utrecht University.
Predicting the location of moving objects in noisy environments is essential to everyday behavior, like when participating in traffic. Although many objects provide multisensory information, it remains unknown how humans use multisensory information to localize moving objects, and how this depends on expected sensory interference (e.g.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
Background: Cochlear implants (CI) with off-the-ear (OTE) and behind-the-ear (BTE) speech processors differ in user experience and audiological performance, impacting speech perception, comfort, and satisfaction.
Objectives: This systematic review explores audiological outcomes (speech perception in quiet and noise) and non-audiological factors (device handling, comfort, cosmetics, overall satisfaction) of OTE and BTE speech processors in CI recipients.
Methods: We conducted a systematic review following PRISMA-S guidelines, examining Medline, Embase, Cochrane Library, Scopus, and ProQuest Dissertations and Theses.
Prior research has indicated musicians show an auditory processing advantage in phonemic processing of language. The aim of the current study was to elucidate when in the auditory cortical processing stream this advantage emerges in a cocktail-party-like environment. Participants (n = 34) were aged 18-35 years and deemed to be either a musician (10+-year experience) or nonmusician (no formal training).
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Department of Biology, University of Aarhus, Aarhus, 8000, Denmark.
Gransier and Kastelein [J. Acoust. Soc.
View Article and Find Full Text PDFBackground And Hypothesis: We have reported previously a reduction in superior temporal gyrus (STG) activation and in auditory verbal hallucinations (AHs) after real-time fMRI neurofeedback (NFB) in schizophrenia patients with AHs.
Study Design: With this randomized, participant-blinded, sham-controlled trial, we expanded our previous results. Specifically, we examined neurofeedback effects from the STG, an area associated with auditory hallucinations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!