A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Induced Genetic Variations in Stomatal Density and Size of Rice Strongly Affects Water Use Efficiency and Responses to Drought Stresses. | LitMetric

Rice ( L.) is an important food crop relied upon by billions of people worldwide. However, with increasing pressure from climate change and rapid population growth, cultivation is very water-intensive. Therefore, it is critical to produce rice that is high-yielding and genetically more water-use efficient. Here, using the stabilized fast-neutron mutagenized population of Jao Hom Nin (JHN) - a popular purple rice cultivar - we microscopically examined hundreds of flag leaves to identify four stomatal model mutants with either high density (HD) or low density (LD) stomata, and small-sized (SS) or large-sized (LS) stomata. With similar genetic background and uniformity, the stomatal model mutants were used to understand the role of stomatal variants on physiological responses to abiotic stress. Our results show that SS and HD respond better to increasing CO2 concentration and HD has higher stomatal conductance (gs) compared to the other stomatal model mutants, although the effects on gas exchange or overall plant performance were small under greenhouse conditions. In addition, the results of our drought experiments suggest that LD and SS can better adapt to restricted water conditions, and LD showed higher water use efficiency (WUE) and biomass/plant than other stomatal model mutants under long-term restricted water treatment. Finally, our study suggests that reducing stomata density and size may play a promising role for further work on developing a climate-ready rice variety to adapt to drought and heat stress. We propose that low stomata density and small size have high potential as genetic donors for improving WUE in climate-ready rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174926PMC
http://dx.doi.org/10.3389/fpls.2022.801706DOI Listing

Publication Analysis

Top Keywords

stomatal model
16
model mutants
16
density size
8
water efficiency
8
restricted water
8
stomata density
8
climate-ready rice
8
stomatal
7
rice
6
density
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!