Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170120PMC
http://dx.doi.org/10.1007/s43683-022-00072-5DOI Listing

Publication Analysis

Top Keywords

development low-cost
4
low-cost easy-to-adopt
4
easy-to-adopt diversity
4
diversity equity
4
equity inclusion
4
inclusion program
4
program crisis
4
development
1
easy-to-adopt
1
diversity
1

Similar Publications

Molecular diagnosis limitations, including complex treatment processes, low cost-effectiveness, and operator-dependent low reproducibility, interrupt the timely prevention of disease spread and the development of medical devices for home and outdoor uses. A newly fabricated gold nanopillar array-based film is presented for superior photothermal energy conversion. Magnifying the metal film surface-to-volume ratio increases the photothermal energy conversion efficiency, resulting in a swift reduction in the gene amplification reaction time.

View Article and Find Full Text PDF

Organic molecular design for high-power density sodium-ion batteries.

Chem Commun (Camb)

January 2025

Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, Ilmenau 98693, Germany.

Organic materials, with abundant resources, low cost, high flexibility, tunable structures, lightweight nature, and wide operating temperature range, are regarded as promising candidates for sodium-ion batteries (SIBs). Unfortunately, their poor electronic and ionic conductivity remain significant challenges, hindering the achievement of high power density for sodium storage. Power density, a critical factor in battery performance evaluation, is essential for assessing fast charging capabilities.

View Article and Find Full Text PDF

Zero-Waste Polyanion and Prussian Blue Composites toward Practical Sodium-Ion Batteries.

Adv Mater

January 2025

Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China.

Closed-loop transformation of raw materials into high-value-added products is highly desired for the sustainable development of the society but is seldom achieved. Here, a low-cost, solvent-free and "zero-waste" mechanochemical protocol is reported for the large-scale preparation of cathode materials for sodium-ion batteries (SIBs). This process ensures full utilization of raw materials, effectively reduces water consumption, and simplifies the operating process.

View Article and Find Full Text PDF

Using low-cost sensors to assess common air pollution sources across multiple residences.

Sci Rep

January 2025

School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

The rapid development of low-cost sensors provides the opportunity to greatly advance the scope and extent of monitoring of indoor air pollution. In this study, calibrated particle matter (PM) sensors and a non-negative matrix factorisation (NMF) source apportionment technique are used to investigate PM concentrations and source contributions across three households in an urban residential area. The NMF is applied to combined data from all houses to generate source profiles that can be used to understand how PM source characteristics are similar or differ between different households in the same urban area.

View Article and Find Full Text PDF

The fermentation process in alcoholic beverage production converts sugars into ethanol and CO, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO-rich waste gas into PHB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!