The outlook of the World toward health infrastructure has drastically changed due to COVID-19 which created the need for the development of emerging technologies where interactions between the patients and the health workers can be minimized. Consequently, a secure and energy-efficient internet of medical things (IoMT) enabled wireless sensor network (WSN) is proposed for communicable infectious diseases that utilizes genetic algorithm. The proposed system makes use of movable sinks in IoT-enabled WSNs for healthcare called OptiGeA. The OptiGeA protocol is depicted for cluster heads (CHs) election by joining the factor of energy, density, distance, and heterogeneous node's capacity for fitness function. Additionally, a novel deployment technique and multiple mobile sink approaches are proposed to reduce transmission distance between sink and CH during system operation which mitigates hotspot issues. It is evident from the simulations that the OptiGeA protocol outflanks state-of-the-art protocols in terms of different performance measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167549PMC
http://dx.doi.org/10.1016/j.compeleceng.2022.108113DOI Listing

Publication Analysis

Top Keywords

secure energy-efficient
8
optigea protocol
8
energy-efficient routing
4
routing protocol
4
protocol disease
4
disease data
4
data transmission
4
transmission iomt
4
iomt outlook
4
outlook health
4

Similar Publications

Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal-Organic Frameworks.

Nanomicro Lett

January 2025

College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.

Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.

View Article and Find Full Text PDF

The performance of drones, especially for time-sensitive tasks, is critical in various applications. Fog nodes strategically placed near IoT devices serve as computational resources for drones, ensuring quick service responses for deadline-driven tasks. However, the limited battery capacity of drones poses a challenge, necessitating energy-efficient Internet of Drones (IoD) systems.

View Article and Find Full Text PDF

Modern language models such as bidirectional encoder representations from transformers have revolutionized natural language processing (NLP) tasks but are computationally intensive, limiting their deployment on edge devices. This paper presents an energy-efficient accelerator design tailored for encoder-based language models, enabling their integration into mobile and edge computing environments. A data-flow-aware hardware accelerator design for language models inspired by Simba, makes use of approximate fixed-point POSIT-based multipliers and uses high bandwidth memory (HBM) in achieving significant improvements in computational efficiency, power consumption, area and latency compared to the hardware-realized scalable accelerator Simba.

View Article and Find Full Text PDF

This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes.

View Article and Find Full Text PDF

Unveiling the role of stratified extracellular polymeric substances in membrane-based microalgae harvesting: Thermodynamic and computational insights.

Water Res

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China.

Membrane separation technology has emerged as a highly energy-efficient method for microalgae enrichment and harvesting in wastewater treatment. However, membrane fouling caused by algal cells and stratified extracellular polymeric substances (EPS) remains a critical barrier to its industrial-scale application. This study meticulously investigates the micro process of algae-derived pollutants stacking to the membrane surface affected by stratified EPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!