Among the three genomes in plant cells, the mitochondrial genome (mitogenome) is the least studied due to complex recombination and intergenomic transfer. In gymnosperms only ∼20 mitogenomes have been released thus far, which hinders a systematic investigation into the tempo and mode of mitochondrial DNA evolution in seed plants. Here, we report the complete mitogenome sequence of (Cupressaceae). This mitogenome is assembled as two circular-mapping chromosomes with a size of ∼2.6 Mb and which contains 32 protein-coding genes, three rRNA and seven tRNA genes, and 1,068 RNA editing sites. Repetitive sequences, including dispersed repeats, transposable elements (TEs), and tandem repeats, made up 23% of the genome. Comparative analyses with 17 other mitogenomes representing the five gymnosperm lineages revealed a 30-fold difference in genome size, 80-fold in repetitive content, and 230-fold in substitution rate. We found dispersed repeats are highly associated with mitogenome expansion ( = 0.99), and most of them were accumulated during recent duplication events. Syntenic blocks and shared sequences between mitogenomes decay rapidly with divergence time ( = 0.53), with the exceptions of Ginkgo and Cycads which retained conserved genome structure over long evolutionary time. Our phylogenetic analysis supports a sister group relationship of Cupressophytes and Gnetophytes; both groups are unique in that they lost 8-12 protein-coding genes, of which 4-7 intact genes are likely transferred to nucleus. These two clades also show accelerated and highly variable substitution rates relative to other gymnosperms. Our study highlights the dynamic and enigmatic evolution of gymnosperm mitogenomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174605 | PMC |
http://dx.doi.org/10.3389/fgene.2022.867736 | DOI Listing |
Genomics
September 2024
National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
Taxus plants are the exclusive source of paclitaxel, an anticancer drug with significant medicinal and economic value. Interspecies hybridization and gene introgression during evolution have obscured distinctions among Taxus species, complicating their phylogenetic classification. While the chloroplast genome of Taxus wallichiana, a widely distributed species in China, has been sequenced, its mitochondrial genome (mitogenome) remains uncharacterized.
View Article and Find Full Text PDFBMC Biol
June 2024
Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
BMC Ecol Evol
March 2023
IZMB, Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
Group II introns are common in the two endosymbiotic organelle genomes of the plant lineage. Chloroplasts harbor 22 positionally conserved group II introns whereas their occurrence in land plant (embryophyte) mitogenomes is highly variable and specific for the seven major clades: liverworts, mosses, hornworts, lycophytes, ferns, gymnosperms and flowering plants. Each plant group features "signature selections" of ca.
View Article and Find Full Text PDFBMC Plant Biol
February 2023
Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, 400715, Chongqing, China.
Background: The complex physical structure and abundant repeat sequences make it difficult to assemble the mitogenomes of seed plants, especially gymnosperms. Only approximately 33 mitogenomes of gymnosperms have been reported. However, as the most widely distributed and the second largest family among gymnosperms, Cupressaceae has only six assembled mitogenomes, including five draft mitogenomes and one complete mitogenome, which has greatly hindered the understanding of mitogenome evolution within this large family, even gymnosperms.
View Article and Find Full Text PDFBMC Genomics
November 2022
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
Background: Plant mitogenomes vary widely in size and genomic architecture. Although hundreds of plant mitogenomes of angiosperm species have already been sequence-characterized, only a few mitogenomes are available from gymnosperms. Silver fir (Abies alba) is an economically important gymnosperm species that is widely distributed in Europe and occupies a large range of environmental conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!