Unlabelled: Predicting the prognosis of patients in advance is conducive to providing personalized treatment for patients. Our aim was to predict the therapeutic efficacy and progression free survival (PFS) of patients with liver metastasis of colorectal cancer according to the changes of computed tomography (CT) radiomics before and after chemotherapy.

Methods: This retrospective study included 139 patients (397 lesions) with colorectal liver metastases who underwent neoadjuvant chemotherapy from April 2015 to April 2020. We divided the lesions into training cohort and testing cohort with a ratio of 7:3. Two - dimensional region of interest (ROI) was obtained by manually delineating the largest layers of each metastasis lesion. The expanded ROI (3 mm and 5 mm) were also included in the study to characterize microenvironment around tumor. For each of the ROI, 1,316 radiomics features were extracted from delineated plain scan, arterial, and venous phase CT images before and after neoadjuvant chemotherapy. Delta radiomics features were constructed by subtracting the radiomics features after treatment from the radiomics features before treatment. Univariate Cox regression and the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression were applied in the training cohort to select the valuable features. Based on clinical characteristics and radiomics features, 7 Cox proportional-hazards model were constructed to predict the PFS of patients. C-index value and Kaplan Meier (KM) analysis were used to evaluate the efficacy of predicting PFS of these models. Moreover, the prediction performance of one-year PFS was also evaluated by area under the curve (AUC).

Results: Compared with the PreRad (Radiomics form pre-treatment CT images; C-index [95% confidence interval (CI)] in testing cohort: 0.614(0.552-0.675) and PostRad models (Radiomics form post-treatment CT images; 0.642(0.578-0.707), the delta model has better PFS prediction performance (Delta radiomics; 0.688(0.627-0.749). By incorporating clinical characteristics, CombDeltaRad obtains the best performance in both training cohort [C-index (95% CI): 0.802(0.772-0.832)] and the testing cohort (0.744(0.686-0.803). For 1-year PFS prediction, CombDeltaRad model obtained the best performance with AUC (95% CI) of 0.871(0.828-0.914) and 0.745 (0.651-0.838) in training cohort and testing cohort, respectively.

Conclusion: CT radiomics features have the potential to predict PFS in patients with colorectal cancer and liver metastasis who undergo neoadjuvant chemotherapy. By combining pre-treatment radiomics features, post-treatment radiomics features, and clinical characteristics better prediction results can be achieved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184515PMC
http://dx.doi.org/10.3389/fonc.2022.843991DOI Listing

Publication Analysis

Top Keywords

radiomics features
32
training cohort
16
testing cohort
16
radiomics
13
delta radiomics
12
pfs patients
12
neoadjuvant chemotherapy
12
clinical characteristics
12
features
9
patients colorectal
8

Similar Publications

Background: The efficacy of immune checkpoint inhibitors (ICIs) depends on the tumor immune microenvironment (TIME), with a preference for a T cell-inflamed TIME. However, challenges in tissue-based assessments via biopsies have triggered the exploration of non-invasive alternatives, such as radiomics, to comprehensively evaluate TIME across diverse cancers. To address these challenges, we develop an ICI response signature by integrating radiomics with T cell-inflamed gene-expression profiles.

View Article and Find Full Text PDF

Background And Purpose: Quantifying tumor heterogeneity from various dimensions is crucial for precise treatment. This study aimed to develop and validate multi-omics models based on the computed tomography images, pathological images, dose and clinical information to predict treatment response and overall survival of non-small cell lung cancer (NSCLC) patients undergoing chemotherapy and radiotherapy.

Materials And Methods: This retrospective study included 220 NSCLC patients from three centers.

View Article and Find Full Text PDF

Background: To develop and validate a clinical-radiomics model for preoperative prediction of lymphovascular invasion (LVI) in rectal cancer.

Methods: This retrospective study included data from 239 patients with pathologically confirmed rectal adenocarcinoma from two centers, all of whom underwent MRI examinations. Cases from the first center (n = 189) were randomly divided into a training set and an internal validation set at a 7:3 ratio, while cases from the second center (n = 50) constituted the external validation set.

View Article and Find Full Text PDF

A Radiomic-Clinical Model of Contrast-Enhanced Mammography for Breast Cancer Biopsy Outcome Prediction.

Acad Radiol

January 2025

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 (C.L., S.W.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (D.A., M.Z., J.S., S.W.); Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15213 (S.W.); Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15213 (S.W.). Electronic address:

Rationale And Objectives: In the USA over 1 million breast biopsies are performed annually. Approximately 9.6% diagnostic exams were given Breast Imaging Reporting and Data System (BI-RADS) ≥4A, most of which are 4A/4B.

View Article and Find Full Text PDF
Article Synopsis
  • Developed a statistical model to predict severe acute oral mucositis in head and neck cancer patients receiving carbon-ion radiation therapy.
  • Used a combination of clinical data, dose-volume statistics, and advanced imaging features for better prediction accuracy.
  • The model showed high accuracy rates (87.1% training, 90.7% test) and can potentially aid in treatment planning and identifying patients at high risk for this complication.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!