Protective Effect of JYBR-190 on Intestinal Mucosal Damage in Chicks Infected With .

Front Vet Sci

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.

Published: May 2022

Pullorum is one of the most serious diseases that endanger the chicken industry. With the advent of the era of anti-antibiotics in feed, the replacement of antibiotics by probiotics has become the focus and hotspot of related research. In this study, hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) were used to observe the structural changes of intestinal mucosa in chicks infected with , and to analyze TNF-α, IL-10, IFN-γ, proliferating cell nuclear antigen (PCNA), and secreted immunoglobulin A (sIgA) levels. The results showed that the intestinal villus height, villus height to crypt depth ratio (V/C), and muscle layer thickness of duodenum, jejunum and cecum in the JYBR-190 group were significantly higher than those of the infection group and antibiotic group. Furthermore, the levels of PCNA, sIgA and IL-10 in JYBR-190 group were significantly increased, whereas the expression of TNF-α and IFN-γ was significantly decreased. Taken together, JYBR-190 has a protective effect on intestinal mucosal damage in chicks infected with .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9184800PMC
http://dx.doi.org/10.3389/fvets.2022.879805DOI Listing

Publication Analysis

Top Keywords

chicks infected
12
intestinal mucosal
8
mucosal damage
8
damage chicks
8
villus height
8
jybr-190 group
8
protective jybr-190
4
intestinal
4
jybr-190 intestinal
4
infected pullorum
4

Similar Publications

The purpose of this study was to investigate the effects of thyme oil (TO), chitosan nanoparticles (CS-NPs), and TO-loaded-CS-NPs on controlling Salmonella Typhimurium (S. Typhimurium) infection in broiler chickens when compared to ciprofloxacin (Cip) antibiotic treatment. The CS-NPs and TO-loaded-CS-NPs were initially characterized using a transmission electron microscope.

View Article and Find Full Text PDF

Isoleucine at position 137 of Hemagglutinin acts as a Mammalian adaptation marker of H9N2 Avian influenza virus.

Emerg Microbes Infect

January 2025

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People's Republic of China.

The H9N2 subtype of avian influenza virus (AIV) is widely distributed among poultry and wild birds and is also a threat to humans. During AIV active surveillance in Liaoning province from 2015 to 2016, we identified ten H9N2 strains exhibiting different lethality to chick embryos. Two representative strains, A/chicken/China/LN07/2016 (CKLN/07) and A/chicken/China/LN17/2016 (CKLN/17), with similar genomic background but different chick embryo lethality, were chosen to evaluate the molecular basis for this difference.

View Article and Find Full Text PDF

Aims: To characterize Escherichia coli O25 ST131 (O25-ST131) isolated from Georgia poultry, - a "global high-risk" clonal strain.

Methods And Results: Using multiplex PCR to detect target genes in 98 isolates of avian pathogenic E. coli (APEC) O25 recovered from avians diagnosed with colibacillosis (n=87) and healthy chicks (n=11) in Georgia, USA.

View Article and Find Full Text PDF

RIPK3 activation of CaMKII triggers mitochondrial apoptosis in NIBV-infected renal tubular epithelial cells.

Vet Microbiol

January 2025

Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:

The purpose of this study was to investigate whether RIPK3-mediated programmed cell death can promote the replication and transmission of renal infectious bronchitis virus in renal tubular epithelial cells. Primary renal tubular epithelial cells were extracted from 1 to 7 day old Hy-Line Brown chicks, cultured in vitro by type I collagenase digestion, and infected with 1MOI SX9 strain. Cell samples were collected at 12 hpi, 24 hpi, 36 hpi and 48 hpi for experimental exploration.

View Article and Find Full Text PDF

As sensors in the gut, tuft cells integrate a complex array of luminal signals to regulate the differentiation fate of intestinal stem cells (ISCs), which trigger a loop of tuft cell-ISC-goblet cell after parasitic infection. As a plant-derived alkaloid, Matrine plays a prominent role for standardizing ISC functions in Eimeria necatrix (EN)-exposed chicks. In this study, we investigated the modulation effects of Matrine on the specific intestinal epithelial cell loop in EN-exposed chicks in vivo and intestinal organoids (IOs) ex vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!