Understanding how crystallographic orientation influences the electrocatalytic performance of metal catalysts can potentially advance the design of catalysts with improved efficiency. Although single crystal electrodes are typically used for such studies, the one-at-a-time preparation procedure limits the range of secondary crystallographic orientations that can be profiled. This work employs scanning electrochemical cell microscopy (SECCM) together with co-located electron backscatter diffraction (EBSD) as a screening technique to investigate how surface crystallographic orientations on polycrystalline copper (Cu) correlate to activity under CO electroreduction conditions. SECCM measures spatially resolved voltammetry on polycrystalline copper covering low overpotentials of CO conversion to intermediates, thereby screening the different activity from low-index facets where H evolution is dominant to high-index facets where more reaction intermediates are expected. This approach allows the acquisition of 2500 voltammograms on approximately 60 different Cu surface facets identified with EBSD. The results show that the order of activity is (111) < (100) < (110) among the Cu primary orientations. The collection of data over a wide range of secondary orientations leads to the construction of an "electrochemical-crystallographic stereographic triangle" that provides a broad comprehension of the trends among Cu secondary surface facets rarely studied in the literature, [particularly (941) and (741)], and clearly shows that the electroreduction activity scales with the step and kink density of these surfaces. This work also reveals that the electrochemical stripping of the passive layer that is naturally formed on Cu in air is strongly grain-dependent, and the relative ease of stripping on low-index facets follows the order of (100) > (111) > (110). This allows a procedure to be implemented, whereby the oxide is removed (to an electrochemically undetectable level) prior to the kinetic analyses of electroreduction activity. SECCM screening allows for the most active surfaces to be ranked and prompts in-depth follow-up studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171721PMC
http://dx.doi.org/10.1021/acscatal.2c01650DOI Listing

Publication Analysis

Top Keywords

electroreduction conditions
8
range secondary
8
crystallographic orientations
8
polycrystalline copper
8
low-index facets
8
surface facets
8
electroreduction activity
8
activity
6
facets
5
screening
4

Similar Publications

Electrocatalysts alter their structure and composition during reaction, which can in turn create new active/selective phases. Identifying these changes is crucial for determining how morphology controls catalytic properties but the mechanisms by which operating conditions shape the catalyst's working state are not yet fully understood. In this study, we show using correlated operando microscopy and spectroscopy that as well-defined CuO cubes evolve under electrochemical nitrate reduction reaction conditions, distinct catalyst motifs are formed depending on the applied potential and the chemical environment.

View Article and Find Full Text PDF

The electrochemical reduction of CO (CORR) to value-added products has garnered significant interest as a sustainable solution to mitigate CO emissions and harness renewable energy sources. Among CORR products, formic acid/formate (HCOOH/HCOO) is particularly attractive due to its industrial relevance, high energy density, and potential candidate as a liquid hydrogen carrier. This study investigates the influence of the initial oxidation state of tin on CORR performance using nanostructured SnO catalysts.

View Article and Find Full Text PDF

Electrocatalytic CO-to-CO conversion with a high CO Faradaic efficiency (FE) at low overpotentials and industrial-level current densities is highly desirable but a huge challenge over non-noble metal catalysts. Herein, graphitic N-rich porous carbons supporting atomically dispersed nickel (NiN-O sites with an axial oxygen) were synthesized (denoted as O-Ni-N-GC) and applied as the cathode catalyst in a CORR flow cell. O-Ni-N-GC showed excellent selectivity with a FE over 92% at low overpotentials ranging from 17 to 60 mV, and over 99% at 80 mV.

View Article and Find Full Text PDF

Sun-simulated-driven production of high-purity methanol from carbon dioxide.

Nat Commun

January 2025

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Analysis and Testing Center, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.

CO conversion to CHOH under mild conditions is of particular interest yet rather challenging. Both electro- and thermo-catalytic CO reduction to CHOH can only produce CHOH in low concentration (typically mixed with water), requiring energy-intensive purification processes. Here we design a sun-simulated-driven tandem catalytic system comprising CO electroreduction to syngas, and further photothermal conversion into high-purity CHOH (volume fraction > 97%).

View Article and Find Full Text PDF

Interfacial Metal Oxides Stabilize Cu Oxidation States for Electrocatalytical CO2 Reduction.

ChemSusChem

January 2025

University of Electronic Science and Technology of China, School of Material and Energy, Qingshuihe Campus:No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, CHINA.

Modulating the oxidation state of copper (Cu) is crucial for enhancing the electrocatalytic CO2 reduction reaction (CO2RR), particularly for facilitating deep reductions to produce methane (CH4) or multi-carbon (C2+) products. However, Cuδ+ sites are thermodynamically unstable, fluctuating their oxidation states under reaction conditions, which complicates their functionality. Incorporating interfacial metal oxides has emerged as an effective strategy for stabilizing these oxidation states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!