Objective: To investigate the independent risk factors of community-acquired pneumonia (CAP) complicated with acute respiratory distress syndrome (ARDS), and the accuracy and prevention value of ARDS prediction based on artificial neural network model in CAP patients.

Methods: A case-control study was conducted. Clinical data of 414 patients with CAP who met the inclusion criteria and were admitted to the comprehensive intensive care unit and respiratory department of Changzhou Second People's Hospital Affiliated to Nanjing Medical University from February 2020 to February 2021 were analyzed. They were divided into two groups according to whether they had complicated with ARDS. The clinical data of the two groups were collected within 24 hours after admission, the influencing factors of ARDS were screened out by univariate analysis, and the artificial neural network model was constructed. Through the artificial neural network model, the importance of input layer independent variables (that was, the influence factors obtained from univariate analysis) on the output layer dependent variables (whether ARDS occurred) was drawn. The artificial neural network modeling data pairs were randomly divided into training group (n = 290) and verification group (n = 124) in a ratio of 7:3. The overall prediction accuracy of the training group and the verification group was calculated respectively. At the same time, the receiver operator characteristic curve (ROC curve) was drawn, and the area under the ROC curve (AUC) was calculated.

Results: All 414 patients were enrolled in the analysis, including 82 patients with ARDS and 332 patients without ARDS. Univariate analysis showed that gender, age, heart rate (HR), maximum systolic blood pressure (MSBP), maximum respiratory rate (MRR), source of admission, C-reactive protein (CRP), procalcitonin (PCT), erythrocyte sedimentation rate (ESR), neutrophil count (NEUT), eosinophil count (EOS), fibrinogen equivalent unit (FEU), activated partial thromboplastin time (APTT), total bilirubin (TBil), albumin (ALB), lactate dehydrogenase (LDH), serum creatinine (SCr), hemoglobin (Hb) and blood glucose (GLU) were significantly different between the two groups, which might be the risk factors of CAP patients complicated with ARDS. Taking the above 19 risk factors as the input layer and whether ARDS occurred as the output layer, the artificial neural network model was constructed. Among the input layer independent variables, the top five indicators with the largest influence weight on the neural network model were LDH (100.0%), PCT (74.4%), FEU (61.5%), MRR (56.9%), and APTT (51.6%), indicating that that these five indicators had a greater impact on the occurrence of ARDS in patients with CAP. The overall prediction accuracy of the artificial neural network model in the training group was 94.1% (273/290), and that of the verification group was 89.5% (111/124). The AUC predicted by the aforementioned artificial neural network model for ARDS in CAP patients was 0.977 (95% confidence interval was 0.956-1.000).

Conclusions: The prediction model of ARDS in CAP patients based on artificial neural network model has good prediction ability, which can be used to calculate the accuracy of ARDS in CAP patients, and specific preventive measures can be given.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.cn121430-20210927-01406DOI Listing

Publication Analysis

Top Keywords

artificial neural
36
neural network
36
network model
32
cap patients
16
ards
13
based artificial
12
risk factors
12
univariate analysis
12
input layer
12
training group
12

Similar Publications

Toward a Free-Response Paradigm of Decision-Making in Spiking Neural Networks.

Neural Comput

January 2025

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200437, China

Spiking neural networks (SNNs) have attracted significant interest in the development of brain-inspired computing systems due to their energy efficiency and similarities to biological information processing. In contrast to continuous-valued artificial neural networks, which produce results in a single step, SNNs require multiple steps during inference to achieve a desired accuracy level, resulting in a burden in real-time response and energy efficiency. Inspired by the tradeoff between speed and accuracy in human and animal decision-making processes, which exhibit correlations among reaction times, task complexity, and decision confidence, an inquiry emerges regarding how an SNN model can benefit by implementing these attributes.

View Article and Find Full Text PDF

Replay as a Basis for Backpropagation Through Time in the Brain.

Neural Comput

January 2025

Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, U.S.A.

How episodic memories are formed in the brain is a continuing puzzle for the neuroscience community. The brain areas that are critical for episodic learning (e.g.

View Article and Find Full Text PDF

Introduction: The prevalence of neurodegenerative diseases has significantly increased, necessitating a deeper understanding of their symptoms, diagnostic processes, and prevention strategies. Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are two prominent neurodegenerative conditions that present diagnostic challenges due to overlapping symptoms. To address these challenges, experts utilize a range of imaging techniques, including magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT).

View Article and Find Full Text PDF

Groundwater arsenic (As), contamination is a significant issue worldwide including China and Pakistan, particularly in canal command areas. In this study, 131 groundwater samples were collected, and three machine learning models [Random Forest (RF), Logistic Regression (LR), and Artificial Neural Network (ANN)] were employed to predict As concentration. Descriptive statistics helped to conclude that all of the samples were inside the permitted limit of WHO for pH, Ca, Mg, Turbidity, Cl, K, Na, SO, NO, F and beyond limit of WHO for EC, HCO, TDS, and As.

View Article and Find Full Text PDF

Automated diagnosis and classification of metacarpal and phalangeal fractures using a convolutional neural network: a retrospective data analysis study.

Acta Orthop

January 2025

Department of Orthopaedic Surgery, Danderyd Hospital, Stockholm; 2 Department of Clinical Sciences at Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden.

Background And Purpose:  Hand fractures are commonly presented in emergency departments, yet diagnostic errors persist, leading to potential complications. The use of artificial intelligence (AI) in fracture detection has shown promise, but research focusing on hand metacarpal and phalangeal fractures remains limited. We aimed to train and evaluate a convolutional neural network (CNN) model to diagnose metacarpal and phalangeal fractures using plain radiographs according to the AO/OTA classification system and custom classifiers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!