Background: Needle rust caused by the fungus Chrysomyxa rhododendri causes significant growth decline and increased mortality of young Norway spruce trees in subalpine forests. Extremely rare trees with enhanced resistance represent promising candidates for practice-oriented reproduction approaches. They also enable the investigation of tree molecular defence and resistance mechanisms against this fungal disease. Here, we combined RNA-Seq, RT-qPCR and secondary metabolite analyses during a period of 38 days following natural infection to investigate differences in constitutive and infection-induced defence between the resistant genotype PRA-R and three susceptible genotypes.
Results: Gene expression and secondary metabolites significantly differed among genotypes from day 7 on and revealed already known, but also novel candidate genes involved in spruce molecular defence against this pathogen. Several key genes related to (here and previously identified) spruce defence pathways to needle rust were differentially expressed in PRA-R compared to susceptible genotypes, both constitutively (in non-symptomatic needles) and infection-induced (in symptomatic needles). These genes encoded both new and well-known antifungal proteins such as endochitinases and chitinases. Specific genetic characteristics concurred with varying phenolic, terpene, and hormone needle contents in the resistant genotype, among them higher accumulation of several flavonoids (mainly kaempferol and taxifolin), stilbenes, geranyl acetone, α-ionone, abscisic acid and salicylic acid.
Conclusions: Combined transcriptional and metabolic profiling of the Norway spruce defence response to infection by C. rhododendri in adult trees under subalpine conditions confirmed the results previously gained on artificially infected young clones in the greenhouse, both regarding timing and development of infection, and providing new insights into genes and metabolic pathways involved. The comparison of genotypes with different degrees of susceptibility proved that several of the identified key genes are differently regulated in PRA-R, and that the resistant genotype combines a strong constitutive defence with an induced response in infected symptomatic needles following fungal invasion. Genetic and metabolic differences between the resistant and susceptible genotypes indicated a more effective hypersensitive response (HR) in needles of PRA-R that prevents penetration and spread of the rust fungus and leads to a lower proportion of symptomatic needles as well as reduced symptom development on the few affected needles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9190139 | PMC |
http://dx.doi.org/10.1186/s12864-022-08661-y | DOI Listing |
Front Microbiol
January 2025
Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
species complex has been regarded as the most destructive disease agent of conifer trees in boreal forests. Tree microbiome can regulate the plant-pathogen interactions by influencing both host resistance and pathogen virulence. Such information would help to improve the future health of forests and explore strategies to enhance ecosystem stability.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany.
Hydraulic redistribution is considered a crucial dryland mechanism that may be important in temperate environments facing increased soil drying-wetting cycles. We investigated redistribution of soil water from deeper, moist to surface, dry soils in a mature mixed European beech forest and whether redistributed water was used by neighbouring native seedlings. In two experiments, we tracked hydraulic redistribution via (1) H labeling and (2) O natural abundance.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plant Experimental Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague, Czech Republic.
A wide range of portable chlorophyll meters are increasingly being used to measure leaf chlorophyll content as an indicator of plant performance, providing reference data for remote sensing studies. We tested the effect of leaf anatomy on the relationship between optical assessments of chlorophyll (Chl) against biochemically determined Chl content as a reference. Optical Chl assessments included measurements taken by four chlorophyll meters: three transmittance-based (SPAD-502, Dualex-4 Scientific, and MultispeQ 2.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, Girionys, LT-53101 Kaunas, Lithuania.
Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone (O), and carbon dioxide (CO) concentrations, on young seedlings of five tree species: Scots pine ( L.); Norway spruce ( (L.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
National Research Council-National Institute of Optics, Largo E. Fermi, 6, 50125 Florence, Italy.
Understanding the deterioration processes in wooden artefacts is essential for accurately assessing their conservation status and developing effective preservation strategies. Advanced imaging techniques are currently being explored to study the impact of chemical changes on the structural and mechanical properties of wood. Nonlinear optical modalities, including second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), combined with fluorescence lifetime imaging microscopy (FLIM), offer a promising non-destructive diagnostic method for evaluating lignocellulose-based materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!