hESC derived cardiomyocyte biosensor to detect the different types of arrhythmogenic properties of drugs.

Anal Chim Acta

Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic. Electronic address:

Published: July 2022

In the present work, we introduce a new cell-based biosensor for detecting arrhythmias based on a novel utilization of the combination of the Atomic Force Microscope (AFM) lateral force measurement as a nanosensor with a dual 3D cardiomyocyte syncytium. Two spontaneously coupled clusters of cardiomyocytes form this. The syncytium's functional contraction behavior was assessed using video sequences analyzed with Musclemotion ImageJ/Fiji software, and immunocytochemistry evaluated phenotype composition. The application of caffeine solution induced arrhythmia as a model drug, and its spontaneous resolution was monitored by AFM lateral force recording and interpretation and calcium fluorescence imaging as a reference method describing non-synchronized contractions of cardiomyocytes. The phenotypic analysis revealed the syncytium as a functional contractile and conduction cardiac behavior model. Calcium fluorescence imaging was used to validate that AFM fully enabled to discriminate cardiac arrhythmias in this in vitro cellular model. The described novel 3D hESCs-based cellular biosensor is suitable to detect arrhythmic events on the level of cardiac contractile and conduction tissue cellular model. The resulting biosensor allows for screening of arrhythmogenic properties of tailored drugs enabling its use in precision medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2022.339959DOI Listing

Publication Analysis

Top Keywords

arrhythmogenic properties
8
afm lateral
8
lateral force
8
calcium fluorescence
8
fluorescence imaging
8
contractile conduction
8
cellular model
8
hesc derived
4
derived cardiomyocyte
4
biosensor
4

Similar Publications

Circadian influences on sudden cardiac death and cardiac electrophysiology.

J Mol Cell Cardiol

January 2025

Department of Physiology, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA. Electronic address:

Cardiologists have analyzed daily patterns in the incidence of sudden cardiac death to identify environmental, behavioral, and physiological factors that trigger fatal arrhythmias. Recent studies have indicated an overall increase in sudden cardiac arrest during daytime hours when the frequency of arrhythmogenic triggers is highest. The risk of fatal arrhythmias arises from the interaction between these triggers-such as elevated sympathetic signaling, catecholamine levels, heart rate, afterload, and platelet aggregation-and the heart's susceptibility (myocardial substrate) to them.

View Article and Find Full Text PDF

Background And Objective: It has been believed that polymorphic ventricular tachycardia (VT) such as torsades de pointes (TdP) seen in patients with long QT syndromes is triggered by creating early afterdepolarization (EAD)-mediated triggered activity (TA). Although the mechanisms creating the TA have been studied intensively, characteristics of the arrhythmogenic (torsadogenic) substrates that link EAD developments to TA formation are still not well understood.

Methods: Computer simulations of excitation propagation in a homogenous two-dimensional ventricular tissue with an anisotropic conduction property were performed to characterize torsadogenic substrates that potentially form TA.

View Article and Find Full Text PDF

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

Correlation Between Voltage and Impedance Mapping in Patients with Atrial Fibrillation.

J Clin Med

December 2024

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy.

Pulmonary vein isolation (PVI) represents the cornerstone of paroxysmal (PAF) and persistent atrial fibrillation (PsAF) ablation. Impedance values provide insights on tissue conductive properties. Consecutive patients undergoing PAF and PsAF ablation were prospectively enrolled.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca release from the sarcoplasmic reticulum (SR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!