Robust control strategy by the Sterile Insect Technique for reducing epidemiological risk in presence of vector migration.

Math Biosci

CIRAD, Umr AMAP, Pôle de Protection des Plantes, F-97410 Saint Pierre, France; AMAP, Univ Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France; University of Pretoria, Department of Mathematics and Applied Mathematics, Pretoria, South Africa. Electronic address:

Published: August 2022

The Sterile Insect Technique (SIT) is a promising technique to control mosquitoes, vectors of diseases, like dengue, chikungunya or Zika. However, its application in the field is not easy, and its success hinges upon several constraints, one of them being that the treated area must be sufficiently isolated to limit migration or re-invasion by mosquitoes from the outside. In this manuscript we study the impact of males and (fertile) females migration on SIT. We show that a critical release rate for sterile males exists for every migration level, in the context of continuous or periodic releases. In particular, when (fertile) females migration is sufficiently low, then SIT can be conducted successfully using either open-loop control or closed-loop control (or a combination of both methods) when regular measurements of the wild population are completed. Numerical simulations to illustrate our theoretical results are presented and discussed. Finally, we derive a threshold value for the females migration rate, when viruses are circulating, under which it is possible to lower the epidemiological risk in the treated area, according to the size of the human population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mbs.2022.108856DOI Listing

Publication Analysis

Top Keywords

females migration
12
sterile insect
8
insect technique
8
epidemiological risk
8
treated area
8
fertile females
8
migration
6
robust control
4
control strategy
4
strategy sterile
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!