AI Article Synopsis

  • High-fat diets can damage the gut's barrier function, leading to health issues like endotoxemia.
  • This study explored whether a supplement rich in anthocyanins (from fruits) could reverse or lessen these negative effects by targeting specific signaling pathways.
  • Mice consuming a high-fat diet showed significant changes in their gut, including tight junction disruption and increased inflammation markers, but these issues were alleviated with anthocyanin-rich extract supplementation, suggesting potential health benefits of these compounds.

Article Abstract

Consumption of high fat diets (HFD) mimics a modern or "Western style" diet pattern and can impair intestinal barrier integrity, leading to endotoxemia and associated unhealthy conditions. This study investigated if supplementation with an anthocyanin (cyanidin and delphinidin glucosides)-rich extract (CDRE) could revert or mitigate HFD-induced alterations of colonic physiology in part through the regulation of Toll-Like Receptor 4 (TLR-4)- and redox-regulated signaling. C57BL/6J male mice were fed for 4 weeks with a control or an HFD. Then, mice were divided in four groups fed either control or HFD, or these diets supplemented with CDRE for the subsequent 4 weeks. After 8 weeks on the HFD we observed in the colon: i) disruption of tight junction structure and function; ii) increased TLR-4 expression; iii) increased NADPH oxidase NOX1 expression, and iv) activation of redox-sensitive and TLR-4-triggered pathways, i.e. NF-κB, ERK1/2, JNK1/2, PI3K/Akt. All these events were prevented or reverted by CDRE supplementation. Supporting the relevance of CDRE-mediated downregulation of TLR-4 on its colon beneficial effect; in vitro (Caco-2 cell monolayers), cyanidin, delphinidin and their metabolites protocatechuic and gallic acid, mitigated lipopolysaccharide (LPS)-induced monolayer permeabilization by restoring tight junction structure and dynamics and preventing lipid/protein oxidation. The CDRE also mitigated HFD-mediated alterations in parameters of goblet cell differentiation and function, including the downregulation of markers of goblet cell differentiation (Klf4), and intestinal mucosa healing (Tff3). Results show that a short-term supplementation with cyanidin and delphinidin, protect from HFD-induced alterations in colon physiology in part through the modulation of TLR-4- and redox-regulated signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2022.06.006DOI Listing

Publication Analysis

Top Keywords

cyanidin delphinidin
16
redox-regulated signaling
12
colon physiology
8
high fat
8
hfd-induced alterations
8
tlr-4- redox-regulated
8
control hfd
8
tight junction
8
junction structure
8
goblet cell
8

Similar Publications

Background: Perilla frutescens (L.) Britt. (Lamiaceae) leaves are essential culinary and medicinal herbs, native to East Asian countries.

View Article and Find Full Text PDF

The color variation of the leaves in autumn is a significant ornamental feature of Bunge, especially when the leaves gradually become redder. Many studies focused on leaf color changes; however, less research has been conducted on the mechanism by which 's autumn leaves turn red. Red, middle and green leaves of were used as the study materials to evaluate their flavonoid-related metabolites and infer gene and metabolite expression patterns in conjunction with transcriptome expression.

View Article and Find Full Text PDF

Molecular and Metabolic Regulation of Flavonoid Biosynthesis in Two Varieties of .

Curr Issues Mol Biol

December 2024

College of Landscape Architecture and Horticulture, Yunnan Agricultural University, Kunming 650201, China.

is an important medicinal plant, rich in flavonoid, with various pharmacological activities such as stomachic and antioxidant properties. In this study, we integrated metabolome and transcriptome analyses to reveal metabolite and gene expression profiles of both green (GDd) and purple-red (RDd) of semi-annual and annual stems. A total of 244 flavonoid metabolites, mainly flavones and flavonols, were identified and annotated.

View Article and Find Full Text PDF

The pigmentation of various components leads to different colors of roses. However, the intricate molecular machinery and metabolic pathways underlying rose pigmentation remain largely unexplored. In this study, we determined that pink and black-red petals contain abundant anthocyanins, reaching concentrations of 800 μg/g and 1400 μg/g, respectively, significantly surpassing those in white and yellow petals.

View Article and Find Full Text PDF

Non-destructive prediction of anthocyanin concentration in whole eggplant peel using hyperspectral imaging.

PeerJ

December 2024

South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, Zhanjiang, Guangdong, China.

Accurately detecting the anthocyanin content in eggplant peel is essential for effective eggplant breeding. The present study aims to present a method that combines hyperspectral imaging with advanced computational analysis to rapidly, non-destructively, and precisely measure anthocyanin content in eggplant fruit. For this purpose, hyperspectral images of the fruits of 20 varieties with diverse colors were collected, and the content of the anthocyanin were detected using high performance liquid chromatography (HPLC) methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!