A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cupric oxide nanoparticles incorporated poly(hydroxybutyrate) nanocomposite for potential biosensing application. | LitMetric

We report the synthesis of a novel electrochemical biosensor comprising of cupric oxide (CuO) nanoparticles (NPs) mediated poly(hydroxybutyrate) (PHB) composite film with polyvinyl alcohol (PVA) as a binder/template support using the solution casting method for the detection of a biomolecule i.e., ascorbic acid (AA). The specimens were characterized for surface, chemical, mechanical, optical, and electrochemical attributes. The results expressed regular mediation of CuO NPs in the PHB/PVA matrix towards nanobiocomposite formation with enhanced crystallinity, inter-molecular interactions, mechanical, and electrochemical attributes, and decreased hydrophilicity and bandgap, thus being useful in potential optoelectronic devices. The synthesized biocomposite film exhibited a tensile strength of 86.24 ± 4.10 N which might be due to reinforcement/uniform dispersion of the CuO nanofiller in the PHB-based matrix. The PHB/CuO composite, then, deposited on a glassy carbon electrode surface exhibited good electrocatalytic activity towards the AA in the aqueous media even at low analyte concentrations. Such modified electrode surfaces with metal/biopolymer complex could find possible applications in the detection of other bioactive molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.06.018DOI Listing

Publication Analysis

Top Keywords

cupric oxide
8
electrochemical attributes
8
oxide nanoparticles
4
nanoparticles incorporated
4
incorporated polyhydroxybutyrate
4
polyhydroxybutyrate nanocomposite
4
nanocomposite potential
4
potential biosensing
4
biosensing application
4
application report
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!