Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increased antimicrobial resistance presents a major threat to public health, and it is a global health problem due to the rapid globalization and transmission of infectious diseases. However, fast and precise diagnosis tool is lacking, and inappropriate antibiotic prescription leads to the unforeseen production of drug-resistant bacteria. Here, we report a Rapid and Accurate Nanoelectrokinetic Diagnostic System (RANDx) for detecting drug-resistant bacteria, which cause a common infectious disease called Urinary Tract Infection (UTI), within 7 min. We develop nanoelectrokinetic paper-based analytic device (NEK-PAD) as a sample prep module of RANDx and obtain >100-fold post-wetting preconcentration by balancing between ion concentration polarization (ICP) and radial imbibition for a constant flow rate. Simultaneously with preconcentration, our cathodic nanochannel design enables NEK-PAD to extract drug-resistant enzymes without denaturation and accelerate enzyme-linked reactions under electrical spontaneous heating at approximately 37 °C. Finally, using a cell phone camera, we detect label-free drug-resistant bacteria as low as 10 cfu/mL, which is higher than clinically required threshold (>10 cfu/mL) by enhancing 1000 times of the limit of detection (LOD) of colorimetric nitrocefin assay. We believe that the RANDx will be an innovative precision medicine tool for UTI and other infectious diseases in limited remote settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2022.114350 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!