Background: Speech is the most common modality through which language is communicated, and delayed, disordered, or absent speech production is a hallmark of many neurodevelopmental and genetic disorders. Yet, speech is not often carefully phenotyped in neurodevelopmental disorders. In this paper, we argue that such deep phenotyping, defined as phenotyping that is specific to speech production and not conflated with language or cognitive ability, is vital if we are to understand how genetic variations affect the brain regions that are associated with spoken language. Speech is distinct from language, though the two are related behaviorally and share neural substrates. We present a brief taxonomy of developmental speech production disorders, with particular emphasis on the motor speech disorders childhood apraxia of speech (a disorder of motor planning) and childhood dysarthria (a set of disorders of motor execution). We review the history of discoveries concerning the KE family, in whom a hereditary form of communication impairment was identified as childhood apraxia of speech and linked to dysfunction in the FOXP2 gene. The story demonstrates how instrumental deep phenotyping of speech production was in this seminal discovery in the genetics of speech and language. There is considerable overlap between the neural substrates associated with speech production and with FOXP2 expression, suggesting that further genes associated with speech dysfunction will also be expressed in similar brain regions. We then show how a biologically accurate computational model of speech production, in combination with detailed information about speech production in children with developmental disorders, can generate testable hypotheses about the nature, genetics, and neurology of speech disorders.
Conclusions: Though speech and language are distinct, specific types of developmental speech disorder are associated with far-reaching effects on verbal communication in children with neurodevelopmental disorders. Therefore, detailed speech phenotyping, in collaboration with experts on pediatric speech development and disorders, can lead us to a new generation of discoveries about how speech development is affected in genetic disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188130 | PMC |
http://dx.doi.org/10.1186/s11689-022-09443-z | DOI Listing |
J Infect Dev Ctries
December 2024
Chest Dpt., Ahmed Maher Teaching Hospital, GOTHI, Cairo, Egypt.
Introduction: The present study aimed to explore the epidemiologic threats and factors associated with the coronavirus disease 2019 (COVID-19)-associated mucormycosis (CAM) epidemic that emerged in Egypt during the second COVID-19 wave. The study also aimed to explore the diagnostic features and the role of surgical interventions of CAM on the outcome of the disease in a central referral hospital.
Methodology: The study included 64 CAM patients from a referral hospital for CAM and a similar number of matched controls from COVID-19 patients who did not develop CAM.
Sci Rep
January 2025
Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA.
Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.
View Article and Find Full Text PDFJ Oral Rehabil
January 2025
Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
Background: Surface electromyography (sEMG) has been used in a wide range of studies conducted in the field of dysphagia.
Objectives: The main aim of this case-control study is to obtain how submental and infrahyoid sEMG signals differ based on residue, penetration and aspiration.
Methods: A total of 100 participants (50 patients with suspected dysphagia and 50 healthy controls) were enrolled in the present study.
Biomedicines
January 2025
Department of Anatomy & Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA.
Speech disorders encompass a complex interplay of neuroanatomical, genetic, and environmental factors affecting individuals' communication ability. This review synthesizes current insights into the neuroanatomy, genetic underpinnings, and environmental influences contributing to speech disorders. Neuroanatomical structures, such as Broca's area, Wernicke's area, the arcuate fasciculus, and basal ganglia, along with their connectivity, play critical roles in speech production, comprehension, and motor coordination.
View Article and Find Full Text PDFAm J Speech Lang Pathol
January 2025
School of Communication Sciences and Disorders, McGill University, Montreal, Quebec, Canada.
Purpose: There is a scarcity of language assessment tools properly adapted for use with minimally speaking autistic children. As these children often use nonspoken methods of communication (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!