In vitro modeling of endometriosis and endometriotic microenvironment - Challenges and recent advances.

Cell Signal

Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland. Electronic address:

Published: September 2022

Endometriosis is a chronic condition with high prevalence in reproductive age women, defined as the growth of endometrial tissue outside the uterine cavity, most commonly on the pelvic peritoneum. The ectopic endometrial lesions exist in a unique microenvironment created by the interaction of epithelial, stromal, endothelial, glandular, and immune cell components, dominated by inflammatory, angiogenic, and endocrine signals. Current research is directed at understanding the complex microenvironment of the lesions and its relationship with different endometriosis stages, phenotypes, and disease symptoms and at the development of novel diagnostic and therapeutic concepts that minimalize the undesirable side effects of current medical management. Recreating pathophysiological cellular and molecular mechanisms and identifying clinically relevant metrics to assess drug efficacy is a great challenge for the experimental disease models. This review summarizes the complete range of available in vitro experimental systems used in endometriotic studies, which reflect the multifactorial nature of the endometriotic lesion. The article discusses the simplistic in vitro models such as primary endometrial cells and endometriotic cell lines to heterogeneous 2D co-cultures, and recently more common, 3D systems based on self-organization and controlled assembly, both in microfluidic or bioprinting methodologies. Basic research models allow studying fundamental pathological mechanisms by which menstrual endometrium adheres, invades, and establishes lesions in ectopic sites. The advanced endometriosis experimental models address the critical challenges and unsolved problems and provide an approach to drug screening and medicine discovery by mimicking the complicated behaviors of the endometriotic lesion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2022.110375DOI Listing

Publication Analysis

Top Keywords

endometriotic lesion
8
endometriotic
5
vitro modeling
4
endometriosis
4
modeling endometriosis
4
endometriosis endometriotic
4
endometriotic microenvironment
4
microenvironment challenges
4
challenges advances
4
advances endometriosis
4

Similar Publications

ALKBH5 promotes autophagy and progression by mediating m6A methylation of lncRNA UBOX5-AS1 in endometriosis.

Am J Physiol Cell Physiol

January 2025

Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

Long noncoding RNA (lncRNA) and N6-methyladenosine (m6A) methylation modification have recently been suggested as potential functional modulators in ovarian endometriosis, however, the function and mechanism of m6A-modified lncRNA in ovarian endometriosis remain poorly understood. In this study, we demonstrated that lncRNA UBOX5-AS1 expression was significantly elevated in ovarian endometriosis tissue and primary ectopic endometrial stromal cells. The expression of lncRNA UBOX5-AS1, which has m6A modifications, was highly positively correlated with demethylase Alk B homologous protein 5 (ALKBH5) expression and autophagy.

View Article and Find Full Text PDF

Despite decades of research, the pathogenesis of endometriosis remains unclear. Recent studies have shown that microRNAs play an important role in this condition. In this study, we found that the expression level of miR-450b-5p was increased in ectopic endometrial tissues and that GA-binding protein A (GABPA) and HOXD10 expression levels were decreased.

View Article and Find Full Text PDF

Objectives: This case report highlights the clinical presentation, diagnostic challenges, and effective management of bladder endometriosis, while emphasizing the importance of considering this diagnosis in patients with chronic pelvic pain and urinary symptoms.

Methods: A 32-year-old woman presented with severe pelvic pain, dysuria, and dyspareunia. Diagnosis of bladder endometriosis was achieved through clinical suspicion supported by vaginal ultrasound, 3D imaging, and magnetic resonance imaging.

View Article and Find Full Text PDF

Introduction: Macranthoidin B is one of the primary and unique triterpenoid saponin metabolites from Hand. -Mazz, which is used to treat endometriosis (EMS) in traditional Chinese medicine. However, the effect of macranthoidin B remains unknown in EMS.

View Article and Find Full Text PDF

Endometriosis and adenomyosis are debilitating gynecological conditions that severely affect the quality of life of women. Traditional diagnostic and treatment methods, including laparoscopic surgery and hormonal therapy, face significant limitations such as incomplete lesion detection, high recurrence rates, and adverse side effects. Emerging bioengineering technologies offer promising solutions for precise diagnosis and therapy of these diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!