A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular mechanisms of encoding and decoding information in cell computing. | LitMetric

Molecular mechanisms of encoding and decoding information in cell computing.

Biosystems

Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, 08855, USA. Electronic address:

Published: September 2022

The process of computing may be defined simply as the goal-directed selection process (GDSP) that selects m out of n possible choices to achieve some desired goals, thereby generating or utilizing the amount of Shannon information, I, that can be approximated as I = - log (m/n) bits. There are at least 3 distinct kinds of the physicochemical systems that can execute GDSP; (i) enzymes (i.e., microscopic or molecular computers), (ii) living cells (as mesoscopic computers), and (iii) brains (as macroscopic computers). In order to help define the principles and mechanisms underlying cell computing, it was thought necessary to compare cell computers with molecular computers (e.g., enzymes) on the one hand and with the macroscopic computers (e.g., Turing machine) on the other. It was concluded that all these different kinds of computers are ultimately driven by the information-energy particle called gnergons, consistent with the Gnergy Principle of Organization formulated by the present auditor in 2018. Also, it was concluded that to delineate how cells compute supported by enzymes necessitated treating enzymes not only as particles but also as standing waves, thus leading to the postulate of the wave-particle duality of enzymes formulated in this paper for the first time, in analogy to the wave-particle duality of light formulated in physics about 100 years ago.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2022.104715DOI Listing

Publication Analysis

Top Keywords

cell computing
8
molecular computers
8
macroscopic computers
8
wave-particle duality
8
computers
7
enzymes
5
molecular mechanisms
4
mechanisms encoding
4
encoding decoding
4
decoding cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!