Slow-releasing precipitating tablets (SRPTs) and slow-releasing floating tablets (SRFTs) were formulated to release fumarate as a carbon source (CS) and/or electron donor (ED) in an in situ biological heterotrophic denitrification system. These tablets were prepared using pharmaceutical manufacturing. Soil column tests were conducted to evaluate nitrate denitrification efficacy, microbial population changes, and mass balance of fumarate and potential electron acceptors. Significant and simultaneous consumption of both fumarate and nitrate, and the production and consumption of nitrite were observed in both SRPT-treated and SRFT-treated soil columns. These results suggest that SRPT and SRFT releasing fumarate, induce heterotrophic biological denitrification. In the SRPT- and SRFT-treated columns, 65% and 73% of fumarate were associated with heterotrophic denitrification, respectively. Particularly, surplus citric acid, originally designed to serve as a floating agent, was utilized for 36% and 28% for SRFT flotation and denitrification, respectively. The results of 16s RNA analyses revealed that a bacterium that shared 99% 16s rRNA sequence similarity with those of Azoarcus sp. AN9, and Pseudogulbenkiania sp. NH8B, a facultative heterotrophic denitrifier, was detected in the column effluent. This study confirms that SRPT and SRFT can effectively operate long-term in situ biological denitrification processes, because it is possible to supply detailed CS and/or ED uniformly by applying both SRPT and SRFT in the well.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135268DOI Listing

Publication Analysis

Top Keywords

situ biological
12
heterotrophic denitrification
12
srpt srft
12
carbon source
8
biological heterotrophic
8
biological denitrification
8
denitrification
7
heterotrophic
5
fumarate
5
evaluating efficacy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!