Kidney omics in hypertension: from statistical associations to biological mechanisms and clinical applications.

Kidney Int

Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia; Health Innovation and Transformation Centre, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia; Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.

Published: September 2022

AI Article Synopsis

  • - Hypertension is a key risk factor for cardiovascular disease and early death, with a significant genetic component influencing blood pressure (BP) due to over 1000 genetic variants linked to BP and hypertension discovered through various studies.
  • - The kidneys play a crucial role in regulating blood pressure and are central to understanding genetic predispositions to hypertension, with research integrating genomics and kidney-specific studies revealing important genes and mechanisms.
  • - Advances in polygenic risk scores and kidney-focused drug discovery are paving the way for improved diagnosis and new treatment options for hypertension and its effects on kidney health.

Article Abstract

Hypertension is a major cardiovascular disease risk factor and contributor to premature death globally. Family-based investigations confirmed a significant heritable component of blood pressure (BP), whereas genome-wide association studies revealed >1000 common and rare genetic variants associated with BP and/or hypertension. The kidney is not only an organ of key relevance to BP regulation and the development of hypertension, but it also acts as the tissue mediator of genetic predisposition to hypertension. The identity of kidney genes, pathways, and related mechanisms underlying the genetic associations with BP has started to emerge through integration of genomics with kidney transcriptomics, epigenomics, and other omics as well as through applications of causal inference, such as Mendelian randomization. Single-cell methods further enabled mapping of BP-associated kidney genes to cell types, and in conjunction with other omics, started to illuminate the biological mechanisms underpinning associations of BP-associated genetic variants and kidney genes. Polygenic risk scores derived from genome-wide association studies and refined on kidney omics hold the promise of enhanced diagnostic prediction, whereas kidney omics-informed drug discovery is likely to contribute new therapeutic opportunities for hypertension and hypertension-mediated kidney damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886011PMC
http://dx.doi.org/10.1016/j.kint.2022.04.045DOI Listing

Publication Analysis

Top Keywords

kidney genes
12
kidney
9
kidney omics
8
biological mechanisms
8
genome-wide association
8
association studies
8
genetic variants
8
hypertension
6
omics hypertension
4
hypertension statistical
4

Similar Publications

Tumor development often requires cellular adaptation to a unique, high metabolic state; however, the molecular mechanisms that drive such metabolic changes in TFE3-rearranged renal cell carcinoma (TFE3-RCC) remain poorly understood. TFE3-RCC, a rare subtype of RCC, is defined by the formation of chimeric proteins involving the transcription factor TFE3. In this study, we analyzed cell lines and genetically engineered mice, demonstrating that the expression of the chimeric protein PRCC-TFE3 induced a hypoxia-related signature by transcriptionally upregulating HIF1α and HIF2α.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCC is challenging. Therefore, the identification of novel secreted biomarkers for the early detection of ccRCC is urgently needed.

View Article and Find Full Text PDF

Screening potential diagnostic biomarkers for PLA2R‑associated idiopathic membranous nephropathy by WGCNA analysis and LASSO algorithm.

Ren Fail

December 2025

Department of Nephrology, Xiamen Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease, The Fifth Hospital of Xiamen, Xiamen, Fujian, China.

Adult nephrotic syndrome is primarily caused by membranous nephropathy (MN), with idiopathic membranous nephropathy (IMN) being a prominent subtype. The onset of phospholipase A2 receptor (PLA2R1)-associated IMN is critically linked to M-type PLA2R1 exposure, yet the mechanism underlying glomerular injury remains unclear. In this study, membranous nephropathy datasets (GSE115857, GSE200828) were retrieved from GEO.

View Article and Find Full Text PDF

Members of the KMT2C/D-KDM6A complex are recurrently mutated in urothelial carcinoma and in histologically normal urothelium. Here, using genetically engineered mouse models, we demonstrate that Kmt2c/d knockout in the urothelium led to impaired differentiation, augmented responses to growth and inflammatory stimuli and sensitization to oncogenic transformation by carcinogen and oncogenes. Mechanistically, KMT2D localized to active enhancers and CpG-poor promoters that preferentially regulate the urothelial lineage program and Kmt2c/d knockout led to diminished H3K4me1, H3K27ac and nascent RNA transcription at these sites, which leads to impaired differentiation.

View Article and Find Full Text PDF

Macrophages exhibit diverse phenotypes depending on environment status, which contribute to physiological and pathological processes of immunological diseases, including sepsis, asthma, multiple sclerosis and colitis. The alternative activation of macrophages is tightly regulated to avoid excessive activation and damage of tissues and organs. Certain works characterized that succinate dehydrogenase (SDH) altered function of macrophages and promoted inflammatory response in M1 macrophages via mitochondrial reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!