Deficiency of proline/serine-rich coiled-coil protein 1 (PSRC1) accelerates trimethylamine N-oxide-induced atherosclerosis in ApoE mice.

J Mol Cell Cardiol

Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Electronic address:

Published: September 2022

Aims: The main therapeutic strategies for coronary artery disease (CAD) are mainly based on the correction of abnormal cholesterol levels; however, residual risks remain. The newly proven gut microbial metabolite trimethylamine N-oxide (TMAO) linked with CAD has broadened our horizons. In this study, we determined the role of proline/serine-rich coiled-coil protein 1 (PSRC1) in TMAO-driven atherosclerosis.

Methods And Results: We first analyzed the levels of TMAO and PSRC1 in patients with or without atherosclerosis with a target LDL-C < 1.8 mmol/L. Plasma TMAO levels were increased and negatively associated with decreased PSRC1 in peripheral blood mononuclear cells. Animals and in vitro studies showed that TMAO inhibited macrophage PSRC1 expression due to DNA hypermethylation of CpG islands. ApoE mice fed a choline-supplemented diet exhibited reduced PSRC1 expression accompanied by increased atherosclerotic lesions and plasma TMAO levels. We further deleted PSRC1 in apoE mice and PSRC1 deficiency significantly accelerated choline-induced atherogenesis, characterized by increased macrophage infiltration, foam cell formation and M1 macrophage polarization. Mechanistically, we overexpressed and knocked out PSRC1 in cultured macrophages to explore the mechanisms underlying TMAO-induced cholesterol accumulation and inflammation. PSRC1 deletion impaired reverse cholesterol transport and enhanced cholesterol uptake and inflammation, while PSRC1 overexpression rescued the proatherogenic phenotype observed in TMAO-stimulated macrophages, which was partially attributed to sulfotransferase 2B1b (SULT2B1b) inhibition.

Conclusions: Herein, clinical data provide evidence that TMAO may participate in the development of CAD beyond well-controlled LDL-C levels. Our work also suggests that PSRC1 is a negative regulator mediating the unfavorable effects of TMAO-containing diets. Therefore, PSRC1 overexpression and reduced choline consumption may further alleviate atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2022.05.013DOI Listing

Publication Analysis

Top Keywords

proline/serine-rich coiled-coil
8
coiled-coil protein
8
protein psrc1
8
deficiency proline/serine-rich
4
psrc1 accelerates
4
accelerates trimethylamine
4
trimethylamine n-oxide-induced
4
n-oxide-induced atherosclerosis
4
atherosclerosis apoe
4
apoe mice
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!