One-step synthesis of well-defined molecularly imprinted nanospheres for the class-selective recognition and separation of β-blockers in human serum.

J Chromatogr A

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: June 2022

β-blockers are a class of medications that are used to treat abnormal heart rhythms and hypertension. Molecularly imprinted polymers (MIPs) capable of selective recognizing and extracting β-blockers from complex biological samples hold great promise in bioanalytical and biomedical applications, but developing such artificial receptor materials is still challenging. Herein, we introduce a simple one-step method for the synthesis of well-defined molecularly imprinted nanospheres in high yield (83.6-94.4%) via reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization for the selective recognition and extraction of the β-blockers from human serum. The prepared MIPs are characterized in terms of morphology, pore properties, binding kinetics, capacity, selectivity, and recognition mechanisms. The uniform nanoscale-imprinted layer favored the rapid mass transfer of β-blockers. The binding studies showed the high adsorption capacity (126.8 μmol/g) and selectivity of the developed nanomaterial. The investigation on the recognition mechanism reveals that multiple driving forces participate in the binding between MIP and β-blockers, where hydrogen bonding plays as the dominating role for the specific recognition. The MIP was successfully applied for the direct enrichment of five β-blockers from human serum with HPLC recoveries ranging from 82.9 to 100.3% and RSD of 0.5-6.9% (n = 3).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2022.463204DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
12
β-blockers human
12
human serum
12
synthesis well-defined
8
well-defined molecularly
8
imprinted nanospheres
8
β-blockers
7
recognition
5
one-step synthesis
4
nanospheres class-selective
4

Similar Publications

Development of Molecularly Imprinted Photonic Crystals Sensor for High-Sensitivity, Rapid Detection of Sulfamethazine in Food Samples.

Polymers (Basel)

January 2025

Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

As a veterinary drug, sulfamethazine is frequently used to control animal diseases. In this study, a novel molecularly imprinted photonic crystal sensor for the fast visual detection of sulfamethazine in milk and chicken has been developed. Under optimum preparation conditions, a molecularly imprinted, photonic crystal with an anti-opal structure and a clear bright color was prepared and characterized.

View Article and Find Full Text PDF

Diabetes is a disorder attributed to impaired production or utilization of insulin and requires rapid precise monitoring of glucose levels. The fabrication of nanotechnology-based non-invasive biosensors for glucose detection holds significant promise for improved diabetes care and point-of-care diagnostics. The study demonstrates a novel molecularly imprinted polymers (ADMIPs) based sensitive biosensor for glucose estimation in saliva using three distinct sensing platforms -cotton swab, paper strip and polymeric film by colorimetric assay.

View Article and Find Full Text PDF

The presence of traces of herbicides in ground and surface waters can have adverse impacts on humans and the environment. Therefore, developing a highly selective and reusable adsorbent for monitoring water quality has become important. This article describes smart green molecularly imprinted polymers (MIPs) as selective sorbents of S-metolachlor herbicide for solid phase extraction (SPE).

View Article and Find Full Text PDF

Visible-Light Photo-Iniferter Polymerization of Molecularly Imprinted Polymers for Direct Integration with Nanotransducers.

Small Methods

January 2025

Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.

Molecularly Imprinted Polymers (MIPs) have gained prominence as synthetic receptors, combining simplicity of synthesis with robust molecular recognition akin to antibodies and enzymes. One of their main application areas is chemical sensing. However, direct integration of MIPs with nanostructured transducers, crucial for enhancing sensing capabilities and broadening MIPs sensing applications, remains limited.

View Article and Find Full Text PDF

Monomer compounds from natural products are the major source of active pharmaceutical molecules, which provide great opportunities for discovering of new drugs. However, natural products contain a large number of rather complex compounds. It is difficult to obtain high-purity monomer compounds from complex natural products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!