Vascular remodeling is a significant feature of pulmonary artery hypertension (PAH), and is characterized by abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). Telomerase reverse transcriptase (TERT), as a determining factor for controlling telomerase activity, has been proven to be associated with cell proliferation. This study aims to explore whether TERT mediates the proliferation and migration of PASMCs and the underlying molecular mechanism. Primary PASMCs from Sprague-Dawley (SD) rats were used in this experiment. Cell proliferation and migration were evaluated by Cell Counting Kit-8, EdU incorporation assay and transwell assay, respectively. Telomerase activity was assessed with a rat TE ELISA kit. Small interfering RNA (siRNA) transfection was conducted to silence c-MYC expression. The protein levels of p-Akt, c-MYC, PPARγ and TERT were determined through western blotting. Our work demonstrates that PDGF upregulated TERT expression and telomerase activation by activating Akt and upregulating of c-MYC in PASMCs. Inhibition of Akt with LY294002, knockdown of c-MYC by siRNA or suppression of telomerase activity with BIBR1532 repressed PDGF-induced PASMC proliferation and migration. Furthermore, activation of peroxisome proliferator-activated receptor γ (PPARγ) with pioglitazone suppressed PDGF-induced TERT expression and telomerase activation, leading to inhibition of PASMC proliferation and migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2022.113233 | DOI Listing |
J Mol Histol
January 2025
Obstetrics and Gynecology, The Affiliated People's Hospital of Ningbo University, 251 East Baizhang Road, Ningbo, 315040, Zhejiang, China.
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulatory molecules in cancer biology. Among these, long intergenic non-protein coding RNA 02418 (LINC02418), a recently identified lncRNA, has been linked to endometrial cancer (EC), although its function and operational mechanisms are largely unclear. The present investigation aims to elucidate the molecular mechanism through which LINC02418 influences EC pathogenesis.
View Article and Find Full Text PDFTurk J Gastroenterol
January 2025
Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Background/aims: Cholangiocarcinoma (CCA) is a malignant and insidious tumor that is tricky to treat. Long non-coding RNA (LncRNA) LINC01123 is a biomolecule that influences cancer progression by regulating gene expression via influencing the regulatory function of microRNAs in gene expression. Therefore, this study investigated the connection between LINC01123 and CCA and explored the underlying mechanism.
View Article and Find Full Text PDFTurk J Gastroenterol
January 2025
Department of Gastrointestinal and Thoracic Surgery, Jiulongpo People's Hospital, Chongqing, China.
Background/aims: Colon adenocarcinoma (COAD) is a prevalent malignant tumor of the digestive system. Previous research has indicated that RNA N6-methyladenosine (m6A) methyltransferase RNA-binding motif protein-15 (RBM15) is involved in various cancers. We aimed to investigate the function of RBM15 in COAD progression and its underlying molecular mechanism.
View Article and Find Full Text PDFThorac Cancer
January 2025
Department of Thoracic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
Background: Our study aimed to explore the specific functions and potential mechanisms of miR-224-5p in non-small cell lung cancer (NSCLC).
Methods: We first analyzed the expression of miR-224-5p in NSCLC patients and cell lines through the GEO database and qRT-PCR analysis. Then, we used MTT assays, wound healing assays, Transwell assays, and western blotting to evaluate the effects of miR-224-5p on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT).
Adv Healthc Mater
January 2025
Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India.
Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!