Objective: The current distribution of the matrix gradient coil can be optimized via matrix gradient coil modeling to reduce the Lorentz force on individual coil elements. Two different modeling approaches are adopted, and their respective characteristics are summarized.
Methods: The magnetic field at each coil element is calculated. Then, the Lorentz force, torque, and deformation of the energized coil element in the magnetic field are derived. Two modeling approaches for matrix gradient coil, namely, optimizing coil element current (OCEC) modeling and optimizing coil element Lorentz force (OCEF) modeling, are proposed to reduce the Lorentz force on individual coil elements. The characteristics of different modeling approaches are compared by analyzing the influence of the weighting factor on the performance of the coil system. The current, Lorentz force, torque, and deformation results calculated via different modeling approaches are also compared.
Results: Coil element magnetic fields are much weaker than the main magnetic field, and their effect can be ignored. Matrix gradient coil modeling with different regularization terms can help to decrease the current and Lorentz force of coil elements. The performance of the coil system calculated via different modeling approaches is similar when suitable weighting factors are adopted. The two modeling approaches, OCEC and OCEF, can better reduce the maximum current and Lorentz force on individual coil elements compared with the traditional modeling approach.
Conclusions: Different modeling approaches can help to optimize the current distribution of coil elements and satisfy various requirements while maintaining the performance of the coil system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10334-022-01022-6 | DOI Listing |
Sci Rep
January 2025
Department of Mechanical Engineering, College of Engineering, University of Ha'il, 81451, Ha'il City, Saudi Arabia.
Non-Newtonian fluids are also widely used in a variety of scientific, engineering, and industrial domains, including the petroleum sector and polymer technologies. They are vital in the development of drag-reducing agents, damping and braking systems, food manufacturing, personal protective equipment, and the printing industry. Fluid movement and transport via porous materials draw a lot of attention; they are important in science and technology.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.
3D Print Addit Manuf
October 2024
Department of Aircraft Manufacturing Engineering, School of Aerospace Engineering, Guizhou Institute of Technology, Guiyang, China.
The application of a pulsed magnetic field (PMF) during a metallurgy solidification process has proven to be an effective method in refining the grain size and improving the mechanical performance of the material. However, fewer works were reported in the realm of laser additive manufacturing (LAM) and the mechanism of grain refinement consequent to the PMF is still unclear. In this work, numerical models were developed to study the thermal-fluid characteristics in the Ti-alloy melt pool generated during the laser scanning process under the effect of a combined direct current (DC) electric field and PMF.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China.
Porous CuNi films are promising candidates for electrocatalytic water splitting, with their catalytic performance largely influenced by the crystallographic structure and chemical state. In this study, by employing a magnetic field-controlled bubble template-assisted electrodeposition method, CuNi films with a preferred Ni(111) crystal orientation were synthesized. Moreover, adjusting the magnetic field direction during deposition can affect the degree of preferred orientation and, consequently, the electrochemical activity of the films.
View Article and Find Full Text PDFChemistry
November 2024
Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France.
Biofuel cells have become an interesting alternative for the design of sustainable energy conversion systems with multiple applications ranging from biosensing and bioelectronics to autonomously moving devices. However, as an electrochemical system, their performance is intimately related to mass transport conditions. In this work, the magnetohydrodynamic (MHD) effect is studied as an easy and straightforward alternative to enhance the performance of a biofuel cell based on the enzymes glucose oxidase (GOx) and bilirubin oxidase (BOD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!