The human cingulate cortex (CC) is a complex region that is characterized by heterogeneous cytoarchitecture, connectivity, and function, and it is associated with various cognitive functions. The adult CC has been divided into various subregions, and this subdivision is highly consistent with its functional differentiation. However, only a few studies have focused on the function of neonatal CC. The aim of this study was to describe the cingulate segregation and the functional connectivity of each subdivision in full-term neonates (n = 60) based on resting-state functional magnetic resonance imaging. The neonatal CC was divided into three subregions, and each subregion showed specific connectivity patterns. The anterior cingulate cortex was mainly correlated with brain regions related to the salience (affected) network and default mode network (DMN), the midcingulate cortex was related to motor areas, and the posterior cingulate cortex was coupled with DMN. Moreover, we found that the cingulate subregions showed distinct functional profiles with major brain networks, which were defined using independent component analysis, and exhibited functional lateralization. This study provided new insights into the understanding of the functional specialization of neonatal CC, and these findings may have significant clinical implications, especially in predicting neurological disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhac225DOI Listing

Publication Analysis

Top Keywords

cingulate cortex
16
based resting-state
8
resting-state functional
8
functional
7
cortex
5
cingulate
5
parcellation cingulate
4
neonatal
4
cortex neonatal
4
neonatal period
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!