Himalayan ecosystem is characterized by its fragile climate with rich repositories of biodiversity. Waste collection and disposal are becoming increasingly difficult due to topographical variations. Aporrectodea caligenosa, a versatile psychrophillic soil dweller, is a useful biocatalyst with potent bio-augmented capability for waste treatment at low temperatures. Microcosm experiments were conducted to elucidate the comprehensive nature of biogenic nitrogen transformation to NH and NO produced by coupling of earthworm-microbes. Higher biogenic recovery of NH-N from coprolites of garden soil (47.73 ± 1.16%) and Himalayan goat manure (86.32 ± 0.92%) with an increment of 14.12 and 47.21% respectively over their respective control (without earthworms) with a linear decline beyond 4th week of incubation was reported. NO-N recovery progressively sustained in garden soil and goat manure coprolites during entire incubation with highest 81.81 ± 0.45 and 87.20 ± 1.08 µg-N gdry weight recorded in 6th and 5th week of incubation respectively and peak increments as 38.58 and 53.71% relative to respective control (without earthworms). Declined NH-N in coprolites at low temperature (15.0 ± 2.0 °C) evidenced increased nitrification rates by taking over the process by abundant nitrifying microbes. Steady de-nitrification with progressive incubation on an average was 16.95 ± 0.46 ng-N g per week and 21.08 ± 0.87 ng-N g per week compared to 14.03 ± 0.58 ng-N g per week and 4.50 ± 0.31 ng-N g per week in respective control treatments. Simultaneous heterotrophic nitrification and aerobic denitrification (SHNAD) was found to be a prominent bioprocess at low temperature that resulted in high and stable total nitrogen and nitrate accumulation from garden soil and goat manure with relative recovery efficiency of 11.12%, 14.97% and 14.20%; 19.34%. A. caligenosa shows promising prospects for mass applicability in biogenic N removal from manure of Himalayan goat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187671 | PMC |
http://dx.doi.org/10.1038/s41598-022-12972-1 | DOI Listing |
Sci Rep
January 2025
Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
Natural extracts as biostimulants have the potential to enhance the productivity and growth of many medicinal and aromatic plants. This study aimed to enhance the growth, and essential oil (EO) content, as well as composition of Lavandula latifolia Medik. by using Malva parviflora L.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.
The present study investigated the genomic and functional potential of Burkholderia contaminans PB_AQ24, a bacterial strain isolated from the municipal solid waste dumpsite, for boosting the growth of Dendrocalamus strictus (Male bamboo) seedlings. The isolated strain exhibited high potency for metal solubilization and ACC (1-Aminocyclopropane-1-carboxylate) deaminase activity. Its genome harbored diverse genes responsible for nitrogen and phosphorus utilization (trpABCDES, iaaH, acdS, pstABCS, phoAUD, pqqABCDE, kdpABC, gln, and nirBD) and also an abundance of heavy metal tolerant genes (ftsH, hptX, iscX-fdx-hscAB-iscAUR, mgtA, corA, and copC).
View Article and Find Full Text PDFOecologia
January 2025
Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-Von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
Rapid environmental changes across Europe include warmer and increasingly variable temperatures, changes in soil nutrient availability, and pollinator decline. These abiotic and biotic changes can affect natural plant populations and force them to optimize resource use against competitors. To date, the evolution of competitive ability in the context of changes in nutrient availability remains understudied.
View Article and Find Full Text PDFEnviron Res
December 2024
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China. Electronic address:
Chinese people are experiencing phthalate exposure risks. However, temporal and regional phthalate internal exposure variations amongst Chinese have not been established. To address this gap, we integrated our 69 adult participants' bio-monitored urinary phthalate metabolite (UPM) concentration data by high-performance liquid chromatography with mass spectrometry in Xi'an and Nanjing and the data from 35 literature (total sample size: 18768).
View Article and Find Full Text PDFPhysiol Plant
January 2025
Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China.
Bermudagrass [Cynodon dactylon (L.) Pers.] is widely used for soil remediation, livestock forage, and as turfgrass for sports fields, parks, and gardens due to its resilience and adaptability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!