The complete biosynthetic pathways are unknown for most natural products (NPs), it is thus valuable to make computer-aided bio-retrosynthesis predictions. Here, a navigable and user-friendly toolkit, BioNavi-NP, is developed to predict the biosynthetic pathways for both NPs and NP-like compounds. First, a single-step bio-retrosynthesis prediction model is trained using both general organic and biosynthetic reactions through end-to-end transformer neural networks. Based on this model, plausible biosynthetic pathways can be efficiently sampled through an AND-OR tree-based planning algorithm from iterative multi-step bio-retrosynthetic routes. Extensive evaluations reveal that BioNavi-NP can identify biosynthetic pathways for 90.2% of 368 test compounds and recover the reported building blocks as in the test set for 72.8%, 1.7 times more accurate than existing conventional rule-based approaches. The model is further shown to identify biologically plausible pathways for complex NPs collected from the recent literature. The toolkit as well as the curated datasets and learned models are freely available to facilitate the elucidation and reconstruction of the biosynthetic pathways for NPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187661 | PMC |
http://dx.doi.org/10.1038/s41467-022-30970-9 | DOI Listing |
Front Microbiol
December 2024
School of Pharmacy, Binzhou Medical University, Yantai, China.
Nicotinamide mononucleotide (NMN), one of the crucial precursors of nicotinamide adenine dinucleotide, has garnered considerable interest for its pharmacological and anti-aging effects, conferring potential health and economic benefits for humans. Lactic acid bacteria (LAB) are one of the most important probiotics, which is commonly used in the dairy industry. Due to its probiotic properties, it presents an attractive platform for food-grade NMN production.
View Article and Find Full Text PDFSci Rep
December 2024
National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.
Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.
View Article and Find Full Text PDFSci Rep
December 2024
Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Continuous cropping obstacle has been becoming the bottleneck for the stable development of morel cultivation. The allelopathic effect of soil allelochemicals may play an instrumental role in the morel soil sickness. In this study, the allelochemicals were identified by gas chromatography-mass spectrometry (GC-MS) combined with in vitro bioassay.
View Article and Find Full Text PDFJ Adv Res
December 2024
Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China. Electronic address:
Introduction: Lonicera caerulea L. (blue honeysuckle) is a noteworthy fleshy-fruited tree and a prominent medicinal plant, which possesses notable characteristics such as exceptional resilience to winter conditions and early maturation, and the richest source of functional anthocyanins, particularly cyanidin-3-glucoside. The molecular mechanisms responsible for its freezing tolerance and anthocyanin biosynthesis remain largely unknown.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.
Discovery of cancer immunogenic chemotherapeutics represents an emerging, highly promising direction for cancer treatment that uses a chemical drug to achieve the efficacy of both chemotherapy and immunotherapy. Herein, we report a high-throughput screening platform and the subsequent discovery of a new class of cancer immunogenic chemotherapeutic leads. Our platform integrates informatics-based activity metabolomics for the rapid identification of microbial natural products with both novel structures and potent activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!