Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
By tying peptide fragments originally distant in parental proteins, the proteasome can generate spliced peptides that are recognized by CTL. This occurs by transpeptidation involving a peptide-acyl-enzyme intermediate and another peptide fragment present in the catalytic chamber. Four main subtypes of proteasomes exist: the standard proteasome (SP), the immunoproteasome, and intermediate proteasomes β1-β2-β5i (single intermediate proteasome) and β1i-β2-β5i (double intermediate proteasome). In this study, we use a tandem mass tag-quantification approach to study the production of six spliced human antigenic peptides by the four proteasome subtypes. Peptides fibroblast growth factor-5 tyrosinase, and gp100 are better produced by the SP than the other proteasome subtypes. The peptides SP110, gp100, and gp100 are better produced by the immunoproteasome and double intermediate proteasome. The current model of proteasome-catalyzed peptide splicing suggests that the production of a spliced peptide depends on the abundance of the peptide splicing partners. Surprisingly, we found that despite the fact that reciprocal peptides RTK_QLYPEW (gp100) and QLYPEW_RTK (gp100) are composed of identical splicing partners, their production varies differently according to the proteasome subtype. These differences were maintained after in vitro digestions involving identical amounts of the splicing fragments. Our results indicate that the amount of splicing partner is not the only factor driving peptide splicing and suggest that peptide splicing efficiency also relies on other factors, such as the affinity of the C-terminal splice reactant for the primed binding site of the catalytic subunit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.2101198 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!