Poly(butylene succinate-co-terephthalate) (PBST) copolyester, is a new type of biodegradable synthetic polymer material that has emerged in recent years, but it cannot meet the market requirements, because of its low strength. The high-strength and high-modulus polylactic acid (PLA) was blended with PBST to increase its strength, and the chain extender ADR-4370 was used to modify PBST/PLA films by reaction and compatibilization. Compared with the 80/20 wt% PBST/PLA films, the tensile strength after modification with 0.3 wt% ADR was increased by 21.8 % and 44.3 % in the machine direction (MD) and in the transverse direction (TD), respectively. The Water Vapor Permeability (WVP) was decreased from 10.0 × 10 to 3.09 × 10 g·cm/cm·s·Pa. The compatibilization mechanism was studied by gel permeation chromatography, infrared spectroscopy, dynamic mechanical analysis, rheological analysis, and other characterization methods. The formation of the copolymer PLA-g-PBST is the most important factor to improve the compatibility of the system and the mechanical properties of the films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.06.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!