In order to explore the microbial diversity in industrial effluents, and on this basis, to verify the feasibility of tracking industrial effluents in sewer networks based on sequencing data, we collected 28 sewage samples from the industrial effluents relative to four factories in Shenzhen, China, and sequenced the 16S rRNA genes to profile the microbial compositions. We identified 5413 operational taxonomic units (OTUs) in total, and found that microbial compositions were highly diverse among samples from different locations in the sewer system, with only 107 OTUs shared by 90% of the samples. These shared OTUs were enriched in the phylum of Proteobacteria, the families of Comamonadaceae and Pseudomonadaceae, as well as the genus of Pseudomonas, with both degradation related and pathogenic bacteria. More importantly, we found differences in microbial composition among samples relevant to different factories, and identified microbial markers differentiating effluents from these factories, which can be used to track the sources of the effluents. This study improved our understanding of microbial diversity in industrial effluents, proved the feasibility of industrial effluent source tracking based on sequencing data, and provided an alternative technique solution for environmental surveillance and management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2022.113640 | DOI Listing |
The present study demonstrates the significance of the C/N ratio and double helical ribbon (DHR) impeller in the anaerobic co-digestion (AnCo-D) of sugar refining process (SRP) effluent and molasses-based distillery spent wash (DSW) for improved biogas production. Both SRP & DSW were mixed in different percentages to achieve an optimum C/N ratio. Further biomethane potential analysis of mixed feeds with different C/N ratios was performed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Environmental Science & Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134.
Wastewater receives per- and polyfluoroalkyl substances (PFAS) from diverse consumer and industrial sources, and discharges are known to be a concern for drinking water quality. The PFAS family includes thousands of potential chemical structures containing organofluorine moieties. Exposures to a few well-studied PFAS, mainly perfluoroalkyl acids (PFAA), have been associated with increased risk of many adverse health outcomes, prompting federal drinking water regulations for six compounds in 2024.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Central Pollution Control Board, MoEF & CC, Government of India, New Delhi, India.
The swift industrial expansion has posed significant environmental challenges, particularly in the context of water pollution. Industrial effluents consist of substantial amounts of harmful pollutants that enter the main rivers via various tapped and untapped drains/local water streams, causing alterations in their physical and chemical properties. This study investigated 153 grossly polluting industries (GPIs) that were identified to release their effluents into the main rivers through different drains within multiple sectors in the industrial zone of four northern states of India in 2023.
View Article and Find Full Text PDFChemosphere
January 2025
Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland. Electronic address:
High production rates of chlorinated paraffins (CPs) and their widespread use resulted in a global contamination. Since 2017, short-chain CPs (SCCPs, C-C) are listed as persistent organic pollutants (POPs) in the Stockholm Convention. Technical CP mixtures contain hundreds of homologues and side products such as chlorinated olefins (COs), diolefins (CdiOs) and triolefins (CtriOs).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Centre, Guangzhou 510006. PR China.
As a hot issue, the scientific and effective separation and extraction of heavy metal ions from complex industrial effluent deserves wide investigation. Copper is an important valuable heavy metal in industrial wastewater. Selective extraction of copper ion (Cu) from effluent not only alleviates the shortage of resources, but also has economic and social benefits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!