A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advanced remediation of pyrene contaminated soil by double dielectric barrier discharge (DDBD) plasma and subsequent composting process. | LitMetric

Due to increasing industrialization, soils are increasingly contaminated by polycyclic aromatics such as pyrene and need gentle treatment to keep the soil functioning. This study applied a double dielectric barrier discharge (DDBD) plasma reactor and composting reactor to remediate pyrene-contaminated soil. The effect of peak-to-peak applied voltages on the remediation efficiency of pyrene was investigated. The experimental results illustrate that pyrene remediation efficiency increased from 43% to 85% when the peak-to-peak applied voltage was increased from 28.0 to 35.8 kV. When using the combined method of DDBD and composting, 90-99% of pyrene could be removed, while a reduction of 76.5% was achieved using only composting, indicating the superiority of the combined system. Moreover, the authors could demonstrate that DDBD plasma treatment improves humification in the post-composting process as humic acid (HA) concentrations increased to 7.7 mg/g with an applied voltage of 35.8 kV; when composting was used as the sole treatment method, only 3.4 mg/g HA were produced. The microbial activity in the DDBD plasma-treated soil peaked on the 5th day and had a 2nd rise afterwards. The authors demonstrate that the combined technology of DDBD plasma and composting is a promising method for soil remediation with persistent organic pollutants. This treatment approach improves pollutant degradation efficiency and facilitates further humification, potentially restoring the function of contaminated soil. This approach could be considered a cost-effective and green strategy for soil remediation with persistent organic pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135255DOI Listing

Publication Analysis

Top Keywords

ddbd plasma
16
contaminated soil
8
double dielectric
8
dielectric barrier
8
barrier discharge
8
discharge ddbd
8
peak-to-peak applied
8
remediation efficiency
8
applied voltage
8
authors demonstrate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!