A central goal of genetics is to define the relationships between genotypes and phenotypes. High-content phenotypic screens such as Perturb-seq (CRISPR-based screens with single-cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells. We use transcriptional phenotypes to predict the function of poorly characterized genes, uncovering new regulators of ribosome biogenesis (including CCDC86, ZNF236, and SPATA5L1), transcription (C7orf26), and mitochondrial respiration (TMEM242). In addition to assigning gene function, single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena-from RNA processing to differentiation. We leverage this ability to systematically identify genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map reveals a multidimensional portrait of gene and cellular function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380471 | PMC |
http://dx.doi.org/10.1016/j.cell.2022.05.013 | DOI Listing |
Cell
July 2022
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. Electronic address:
A central goal of genetics is to define the relationships between genotypes and phenotypes. High-content phenotypic screens such as Perturb-seq (CRISPR-based screens with single-cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all expressed genes with CRISPR interference (CRISPRi) across >2.
View Article and Find Full Text PDFCurr Opin Struct Biol
August 2017
Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, United States; Departments of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, United States. Electronic address:
The advent of next-generation sequencing (NGS) has revolutionized protein science, and the development of complementary methods enabling NGS-driven protein engineering have followed. In general, these experiments address the functional consequences of thousands of protein variants in a massively parallel manner using genotype-phenotype linked high-throughput functional screens followed by DNA counting via deep sequencing. We highlight the use of information rich datasets to engineer protein molecular recognition.
View Article and Find Full Text PDFGenet Res (Camb)
June 2009
UMR de Génétique Végétale, Ferme du Moulon, 91190 Gif Sur Yvette, France.
Fine scale analyses of signatures of selection allow assessing quantitative aspects of a species' evolutionary genetic history, such as the strength of selection on genes. When several selected loci lie in the same genomic region, their epistatic interactions may also be investigated. Here, we study how the neutral polymorphism pattern was shaped by two close recombining loci that cause 'sex-ratio' meiotic drive in Drosophila simulans, as an example of strong selection with potentially strong epistasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!