We describe an automatic classifier of arrhythmias based on 12-lead and reduced-lead electrocardiograms. Our classifier comprises four modules: scattering transform (ST), phase harmonic correlation (PHC), depthwise separable convolutions (DSC), and a long short-term memory (LSTM) network. It is trained on PhysioNet/Computing in Cardiology Challenge 2021 data. The ST captures short-term temporal ECG modulations while the PHC characterizes the phase dependence of coherent ECG components. Both reduce the sampling rate to a few samples per typical heart beat. We pass the output of the ST and PHC to a depthwise-separable convolution layer (DSC) which combines lead responses separately for each ST or PHC coefficient and then combines resulting values across all coefficients. At a deeper level, two LSTM layers integrate local variations of the input over long time scales. We train in an end-to-end fashion as a multilabel classification problem with a normal and 25 arrhythmia classes. Lastly, we use canonical correlation analysis (CCA) for transfer learning from 12-lead ST and PHC representations to reduced-lead ones. After local cross-validation on the public data from the challenge, our team 'BitScattered' achieved the following results: 0.682 ± 0.0095 for 12-lead; 0.666 ± 0.0257 for 6-lead; 0.674 ± 0.0185 for 4-lead; 0.661 ± 0.0098 for 3-lead; and 0.662 ± 0.0151 for 2-lead.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6579/ac77d1DOI Listing

Publication Analysis

Top Keywords

12-lead reduced-lead
8
reduced-lead electrocardiograms
8
phase harmonic
8
harmonic correlation
8
phc
5
arrhythmia classification
4
12-lead
4
classification 12-lead
4
electrocardiograms recurrent
4
recurrent networks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!