In the present study Piriformospora indica (Pi) a phyto-promotional fungus and Azotobacter chroococcumWR5 (AzWR5) a rhizobacterium, were symbiotically evaluated for their role in improving the nutritional quality of wheat (Triticum aestivum L.). Co-inoculation of Pi+AzWR5 modified root system architecture of host and along with increasing the proportion of finer roots by 88% and 92% in C306 and Hd2967 respectively. Furthermore, the synergistic impact of Pi+AzWR5 interplayed for enhanced accumulation of Zn and Fe in different plant parts including grains (3.12 and 1.33 fold respectively). Pi+AzWR5 increased the transfer factor of Zn (62%, 94%, 91% and 213%) and Fe (31%, 54%, 68% and 32%) in root, stem, leaves and grains, respectively, and translocation factor of Zn (20%, 18% and 63%) and Fe (18%, 29% and 29%) for root-stem, root-leaves and root-grains, respectively. In addition to these co-inoculation of endophytes led to several fold increase in expression of four ZIP transporter genes in roots and shoot. In addition to these symbiotic association of endophytes with host led to 3 fold increase in grain yield. We thereby conclude that co-inoculation of Pi+AzWR5 substantially improves mobilization of Zn and Fe from soil and increase its concentration in grains as well as improves crop yield.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2022.127075DOI Listing

Publication Analysis

Top Keywords

piriformospora indica
8
co-inoculation pi+azwr5
8
led fold
8
fold increase
8
symbiotic interplay
4
interplay piriformospora
4
indica azotobacter
4
azotobacter chroococcum
4
chroococcum augments
4
augments crop
4

Similar Publications

A pipeline for validation of Serendipita indica effector-like sRNA suggests cross-kingdom communication in the symbiosis with Arabidopsis.

J Exp Bot

December 2024

Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany.

Bidirectional communication between pathogenic microbes and their plant hosts via small (s)RNA-mediated cross-kingdom RNA interference (ckRNAi) is a key element for successful host colonisation. Whether mutualistic fungi of the Serendipitaceae family, known for their extremely broad host range, use sRNAs to colonize plant roots is still under debate. To address this question, we developed a pipeline to validate the accumulation, translocation, and activity of fungal sRNAs in post-transcriptional silencing of Arabidopsis thaliana genes.

View Article and Find Full Text PDF

Bletilla striata (Thunb.) Reichb.f is renowned for its traditional medicinal applications and a spectrum of pharmacological activities, which is intricately linked to militarine.

View Article and Find Full Text PDF

The Impact of on plant heat and drought tolerance.

Front Plant Sci

December 2024

International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.

In recent years, the global rise in temperatures has led to drought and heat becoming major environmental stresses that limit plant growth. Previous research has demonstrated the potential of in augmenting plant stress resistance. However, specific studies on its effects and underlying mechanisms in cuttings of , and Planch are relatively limited.

View Article and Find Full Text PDF

Identification of a drought stress response module in tomato plants commonly induced by fungal endophytes that confer increased drought tolerance.

Plant Mol Biol

December 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain.

Global climate change exacerbates abiotic stresses, as drought, heat, and salt stresses are anticipated to increase significantly in the coming years. Plants coexist with a diverse range of microorganisms. Multiple inter-organismic relationships are known to confer benefits to plants, including growth promotion and enhanced tolerance to abiotic stresses.

View Article and Find Full Text PDF

Facility warming can promote fruit ripening of winter jujube ( Mill. cv. Dongzao, DZ) for pre-marketing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!