is one of the most famous valuable medical plants in China, and its broad application in clinical treatment has an inseparable relationship with the active molecules, ginsenosides. Ginsenosides are glycoside compounds that have varied structures for the diverse sugar chain. Although extensive work has been done, there are still unknown steps in the biosynthetic pathway of ginsenosides. Here, we screened candidate glycosyltransferase genes based on the previous genome and transcriptome data of and cloned the full length of 27 UGT genes successfully. Among them, we found that UGT33 could catalyze different ginsenoside substrates to produce higher polarity rare ginsenosides by extending the sugar chain. We further analyzed the enzymatic kinetics and predicted the catalytic mechanism of UGT33 by simulating molecular docking. After that, we reconstructed the biosynthetic pathway of rare ginsenoside Rg and gypenoside LXXV in yeast. By combining the Golden Gate method and overexpressing the UDPG biosynthetic genes, we further improved the yield of engineering yeast strain. Finally, the shake-flask culture yield of Rg reached 51 mg/L and the fed-batch fermentation yield of gypenoside LXXV reached 94.5 mg/L, which was the first and highest record.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.2c00094DOI Listing

Publication Analysis

Top Keywords

glycosyltransferase genes
8
engineering yeast
8
rare ginsenosides
8
sugar chain
8
biosynthetic pathway
8
gypenoside lxxv
8
ginsenosides
5
key glycosyltransferase
4
genes
4
genes identification
4

Similar Publications

Corn leaf blight and stem rot caused by are significant diseases that severely affect corn crops. Glycosyltransferases (GTs) catalyze the transfer of sugar residues to diverse receptor molecules, participating in numerous biological processes and facilitating functions ranging from structural support to signal transduction. This study identified 101 genes through functional annotation of the TZ-3 genome.

View Article and Find Full Text PDF

The poor prognosis of infections associated with multidrug-resistant can be attributed to several conditions of the patient and virulence factors of the pathogen, such as the type III secretion system (T3SS), which presents the ability to inject four effectors into the host cell: ExoS, ExoT, ExoU and ExoY. The aim of this study was to analyze the distribution of genes through multiplex polymerase chain reaction in strains isolated from patients at a third-level pediatric hospital and their relationships with clinical variables, e.g.

View Article and Find Full Text PDF

Background: Hexokinase (HK) deficiency is a rare autosomal recessively inherited disease manifested by chronic nonspherocytic hemolytic anemia. Most patients present with a mild to severe course of the disease (fetal hydrocephalus, neonatal hyperbilirubinemia, severe anemia). We reviewed 37 cases of patients with hexokinase deficiency described so far, focusing on the severity of the disease, clinical presentation, treatment applied, and genetic test results.

View Article and Find Full Text PDF

Background: Mutations in the ABO gene, including base insertions, deletions, substitutions, and splicing errors, can result in blood group subgroups associated with the quantity and quality of blood group antigens. Here, we employed third-generation PacBio sequencing to uncover a novel allele arising from an intron splice site mutation, which altered the expected A phenotype to manifest as an Ael phenotype. The study aimed to characterize the molecular mechanism underlying this phenotypic switch.

View Article and Find Full Text PDF
Article Synopsis
  • Acanthamoeba species are protozoa that can cause serious eye and CNS infections, and current treatments are often ineffective, especially in specific areas like the eye.
  • The study evaluates the effectiveness of ethanolic fruit extract of E. umbellata, silver nanoparticles derived from it, and lauric acid in killing Acanthamoeba trophozoites and protecting DNA from damage.
  • Results show that these treatments can significantly kill trophozoites and prevent DNA damage, suggesting potential new options for treating Acanthamoeba infections.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!