Hughes, S, Warmenhoven, J, Haff, GG, Chapman, DW, and Nimphius, S. Countermovement jump and squat jump force-time curve analysis in control and fatigue conditions. J Strength Cond Res 36(10): 2752-2761, 2022-This study aimed to reanalyze previously published discrete force data from countermovement jumps (CMJs) and squat jumps (SJs) using statistical parametric mapping (SPM), a statistical method that enables analysis of data in its native, complete state. Statistical parametric mapping analysis of 1-dimensional (1D) force-time curves was compared with previous zero-dimensional (0D) analysis of peak force to assess sensitivity of 1D analysis. Thirty-two subjects completed CMJs and SJs at baseline, 15 minutes, 1, 24, and 48 hours following fatigue and control conditions in a pseudo random cross-over design. Absolute (CMJ ABS /SJ ABS ) and time-normalized (CMJ NORM /SJ NORM ) force-time data were analyzed using SPM 2-way repeated measures analysis of variance with significance accepted at α = 0.05. The SPM indicated a magnitude of difference between force-time data with main effects for time ( p < 0.001) and interaction ( p < 0.001) observed in CMJ ABS , SJ ABS, and SJ NORM, whereas previously published 0D analysis reported no 2-way interaction in CMJ and SJ peak force. This exploratory research demonstrates the strength of SPM to identify changes between entire movement force-time curves. Continued development and use of SPM analysis techniques could present the opportunity for refined assessment of athlete fatigue and readiness with the analysis of complete force-time curves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9488939 | PMC |
http://dx.doi.org/10.1519/JSC.0000000000003955 | DOI Listing |
Sensors (Basel)
December 2024
College of Physical Education and Health Engineering, Taiyuan University of Technology, Jinzhong 030600, China.
The application of dynamic data in biomechanics is crucial; traditional laboratory-level force measurement systems are precise, but they are costly and limited to fixed environments. To address these limitations, empirical evidence supports the widespread adoption of portable force-measuring platforms, with recommendations for their ongoing development and enhancement. Taiyuan University of Technology has collaborated with KunWei Sports Technology Co.
View Article and Find Full Text PDFChemSusChem
January 2025
Shanghai University, shanghai institute of applied mathematics and mechanics, 149 yanchang road, 200444, Shanghai, CHINA.
Electrolyte wettability significantly effects the electrochemical performance of lithium-ion batteries (LIBs). In this study, buoyancy testing is employed to accurately measure the force-time curve of electrolyte penetration into the electrodes and thereby calculate the wettability rate. Electrochemical performance is comprehensively evaluated through CR2025 coin half-cell testing, four-point probe analysis, and C-rate cycling experiments.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
December 2024
Bioengineering, Tissues and Neuroplasticity, UR 7377, Faculty of Health/EPISEN, University of Paris-Est Créteil, 94010 Créteil, France.
Objectives: To compare the effects of explosive and strength resistance training on neuromuscular and functional parameters in older adults and to analyze the relationship between changes in walking speed and improvements in plantar flexor (PF) neuromuscular parameters following interventions.
Methods: In total, 40 participants were randomly assigned to either an explosive resistance training group (EXG, n = 18; age = 80.41 ± 10.
PLoS One
December 2024
Gynecology and Obstetrics Department, CHRU Limoges, Limoges, 87000, France.
J Hum Kinet
October 2024
Faculty of Sport Sciences, Waseda University, Saitama, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!