T follicular helper (T) cells play a crucial role in the development of long-lived, high-quality B cell responses after infection and vaccination. However, little is known about how antigen-specific T cells clonally evolve in response to complex pathogens and what guides the targeting of different epitopes. Here, we assessed the cell phenotype, clonal dynamics, and T cell receptor (TCR) specificity of human circulating T (cT) cells during successive malaria immunizations with radiation-attenuated () sporozoites. Repeated parasite exposures induced a dynamic, polyclonal cT response with high frequency of cells specific to a small number of epitopes in circumsporozoite protein (PfCSP), the primary sporozoite surface protein and well-defined vaccine target. Human leukocyte antigen (HLA) restrictions and differences in TCR generation probability were associated with differences in the epitope targeting frequency and indicated the potential of amino acids 311 to 333 in the Th2R/T* region as a T cell supertope. But most of vaccine-induced anti-amino acid 311 to 333 TCRs, including convergent TCRs with high sequence similarity, failed to tolerate natural polymorphisms in their target peptide sequence, thus demonstrating that the T cell response was limited to the vaccine strain. These data suggest that the high parasite diversity in endemic areas will limit boosting of the vaccine-induced T cell response by natural infections. Our findings may guide the further design of PfCSP-based malaria vaccines able to induce potent T helper cell responses for broad, long-lasting antibody responses.

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciimmunol.abm9644DOI Listing

Publication Analysis

Top Keywords

cell response
12
tcr specificity
8
specificity human
8
cell
8
cell responses
8
311 333
8
response
5
clonal evolution
4
evolution tcr
4
human cell
4

Similar Publications

Background: This study was designed to determine the effects of acceptance and commitment care in the treatment of aplastic anemia (AA) patients with recombinant human thrombopoietin (rhTPO).

Methods: The clinical records of 100 AA patients treated at our hospital from March 2021 to March 2023 were analyzed in the retrospective study. All patients received immunosuppressants and rhTPO.

View Article and Find Full Text PDF

Background/objectives: The efficacy of monovalent BNT162b2 Omicron XBB.1.5 booster vaccination in liver transplant recipients (LTRs) has yet to be described, particularly regarding the immune response to emerging variants like JN.

View Article and Find Full Text PDF

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications.

View Article and Find Full Text PDF

The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!