This paper presents an active impedance matching scheme that tries to optimize electrical power transfer and acoustic reflectivity in ultrasound transducers. Leveraging negative capacitance-based impedance matching would potentially improve the bandwidth and electrical power transfer while minimizing acoustic reflection of transducer elements and improve uniformity while reducing acoustic crosstalk of transducer arrays. A 16-element transceiver front-end is designed which employs an element-level active capacitive impedance cancellation scheme using an element-level negative impedance converter. The ASIC fabricated in 180-nm HVBCD technology provides high-voltage pulses up to 60 V consuming 3.6 mW and occupying 2.5 mm. The front-end ASIC is used with a 1-D capacitive micromachined ultrasonic transducer (CMUT) array and its acoustical reflectivity reduction and imaging capabilities have successfully been demonstrated through pulse-echo measurements and acoustic imaging experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712518PMC
http://dx.doi.org/10.1109/TBCAS.2022.3181157DOI Listing

Publication Analysis

Top Keywords

acoustic reflectivity
8
impedance matching
8
electrical power
8
power transfer
8
acoustic
5
adaptive element-level
4
element-level impedance-matched
4
impedance-matched asic
4
asic improved
4
improved acoustic
4

Similar Publications

Alteration of responses to salient stimuli occurs in a wide range of brain disorders and may be rooted in pathophysiological brain state dynamics. Specifically, tonic and phasic modes of activity in the reticular activating system (RAS) influence, and are influenced by, salient stimuli, respectively. The RAS influences the spectral characteristics of activity in the neocortex, shifting the balance between low- and high-frequency fluctuations.

View Article and Find Full Text PDF

Dynamical theories of speech processing propose that the auditory cortex parses acoustic information in parallel at the syllabic and phonemic timescales. We developed a paradigm to independently manipulate both linguistic timescales, and acquired intracranial recordings from 11 patients who are epileptic listening to French sentences. Our results indicate that (i) syllabic and phonemic timescales are both reflected in the acoustic spectral flux; (ii) during comprehension, the auditory cortex tracks the syllabic timescale in the theta range, while neural activity in the alpha-beta range phase locks to the phonemic timescale; (iii) these neural dynamics occur simultaneously and share a joint spatial location; (iv) the spectral flux embeds two timescales-in the theta and low-beta ranges-across 17 natural languages.

View Article and Find Full Text PDF

During the 2016-2017 Canada Basin Acoustic Propagation Experiment, an ocean acoustic tomography array with a radius of 150 km measured the impulse responses of the ocean every 4 hr at a variety of ranges and bearings using broadband signals with center frequencies from 172.5 to 275 Hz. Ice-profiling sonar data showed a gradual increase in ice draft over the winter with daily median ice drafts reaching maxima of about 1.

View Article and Find Full Text PDF

Vocal learners, including humans and songbirds, acquire their complex vocalizations by accurately memorizing and imitating the vocal patterns of other individuals. In songbirds, the caudomedial nidopallium (NCM), considered the secondary auditory region, has been suggested to play a critical role in memorizing and recognizing the songs of tutors. However, the mechanisms by which NCM neurons encode the acoustic information of tutor song are not yet fully understood.

View Article and Find Full Text PDF

This study presents a method to add a crack analysis algorithm to the Acoustic Leak Monitoring System (ALMS) to detect and evaluate the crack growth process in the primary system piping of nuclear power plants. To achieve this, a fracture test was conducted by applying stepwise loading to welded specimens that simulate the cold leg section, and acoustic emission (AE) signals were measured in relation to the increase in strain using an AE testing system. The experimental results indicated that the stability and instability of cracks could be assessed through the Kaiser effect and the Felicity effect when detecting crack growth using AE signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!