Avian influenza viruses (AIV) are a worldwide threat to animal and human health. As wild waterfowl circulate and spread these viruses around the world, investigations of AIV prevalence in wild populations are critical for understanding pathogen transmission, as well as predicting disease outbreaks in domestic animals and humans. Surveillance efforts in this study have isolated H4N6 for the first time in Israel from a faecal sample of a wild mallard (Anas platyrhynchos). Phylogenetic analyses of the HA and NA genes revealed that this strain is closely related to isolates from Europe and Asia. This Eurasian origin, together with Israel serving as an important migratory bottleneck of the mid Palearctic-African flyway, suggests a potential introduction of this strain by migratory birds. Additional phylogenetic analysis of the isolate's internal genes (PB1, PB2, PA, NP, M and NS) revealed high levels of phylogenetic relatedness with other AIV subtypes, indicating previous reassortment events. High reassortment rates are characteristic for H4N6 viruses, which, together with this subtype's ability to infect pigs and adaptability to the human receptor binding domain, raises the concern that it would potentially become zoonotic in the future. These results emphasize the importance of continuous AIV monitoring in migratory birds.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tbed.14610DOI Listing

Publication Analysis

Top Keywords

avian influenza
8
wild mallard
8
mallard anas
8
anas platyrhynchos
8
migratory birds
8
detection avian
4
influenza subtype
4
subtype h4n6
4
h4n6 israel
4
wild
4

Similar Publications

During the 2023-2024 winter, 11 high pathogenicity avian influenza (HPAI) outbreaks caused by clade 2.3.4.

View Article and Find Full Text PDF

Since late 2021, outbreaks of highly pathogenic avian influenza virus have caused a record number of mortalities in wild birds, domestic poultry, and mammals in North America. Wetlands are plausible environmental reservoirs of avian influenza virus; however, the transmission and persistence of the virus in the aquatic environment are poorly understood. To explore environmental contamination with the avian influenza virus, a large-volume concentration method for detecting infectious avian influenza virus in waterbodies was developed.

View Article and Find Full Text PDF

Special Issue "Host Targeted Therapeutics Against Virus Infections".

Viruses

November 2024

Institute of Medical Virology, Justus Liebig University Giessen, 35392 Giessen, Germany.

The COVID-19 pandemic, along with the emergence and sustained transmission of highly pathogenic avian influenza viruses (H5N1) in U [...

View Article and Find Full Text PDF

Background: Recombinant avian influenza subunit vaccines often require adjuvants to enhance immune responses. This study aims to evaluate the immune-enhancing potential of seven combination adjuvants in specific pathogen-free (SPF) chickens.

Methods: SPF chickens were vaccinated with combinations of ISA78VG and adjuvants, including Quil-A, CpG, and monophosphoryl lipid A (MPLA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!