Background: Intracranial stents are used to treat aneurysms by diverting the blood flow from entering into the aneurysmal dome. Although delayed rupture is rare, clinical outcomes are extremely poor in such cases. Hemodynamics after stent deployment may be related to delayed rupture and a better understanding of the basic characteristics of pressure changes resulting from stent deployment is needed; therefore, this study investigated the relationships between hemodynamics in aneurysms of different sizes treated using stents of different wire mesh densities.

Methods: Using computational fluid dynamics analysis, parameters related to velocity, volume flow rate, pressure, and residual volume inside the aneurysm were evaluated in digital models of 5 basic aneurysms of differing sizes (Small, Medium, Medium-Large, Large, and Giant) and using 6 different types of stent (varying number of wires, stent pitch and wire mesh density) for each aneurysm.

Results: Regardless of the aneurysm size, the velocity inside the aneurysm and the volume flow rate into the aneurysm were observed to continuously decrease up to 89.2% and 78.1%, respectively, with increasing stent mesh density. In terms of pressure, for giant aneurysms, the pressure on the aneurysmal surface elevated to 10.3%, then decreased to 5.1% with increasing stent mesh density. However, in smaller aneurysms, this pressure continuously decreased with increasing stent mesh density. The flow-diverting effect of the stents was limited when a stent with low mesh density (under 20%) was used with a giant aneurysm.

Conclusions: The present results indicate that the selection of appropriate stents according to aneurysm size may contribute to reduced risks of hemodynamic alternations related to stent deployment, which could reduce the incidence of delayed rupture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187070PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269675PLOS

Publication Analysis

Top Keywords

mesh density
20
wire mesh
12
delayed rupture
12
stent deployment
12
increasing stent
12
stent mesh
12
stent
9
hemodynamics aneurysms
8
aneurysms sizes
8
volume flow
8

Similar Publications

Production and Characterization of Oil-Loaded, Semi-Resorbable, Tri-Layered Hernia Mesh.

Polymers (Basel)

January 2025

Institute of Graduate Studies, Bioengineering Division, Tokat Gaziosmanpaşa University, 60250 Tokat, Türkiye.

Hernia repair is the most common surgical operation applied worldwide. Mesh prostheses are used to support weakened or damaged tissue to decrease the risk of hernia recurrence. However, the patches currently used in clinic applications have significant short-term and long-term risks.

View Article and Find Full Text PDF

The loofah sponge has a complex, three-dimensional, porous mesh fiber structure characterized by markedly low density and excellent vibration isolation properties. In this study, loofah sponges made from dried were divided into two components: the core unit and the shell unit, which were further subdivided into five regions. Static compression performance tests and vibration isolation analysis were conducted on the loofah sponge and its individual parts.

View Article and Find Full Text PDF

Lithium-sulfur batteries have been recognized as one of the excellent candidates for next-generation energy storage batteries because of their high energy density and low cost and low pollution. However, lithium-sulfur batteries have been challenged by low conductivity, low sulfur utilization, poor cycle life, and the shuttle effect of polysulfides. To address these problems, we report here an independent mixed sulfur host.

View Article and Find Full Text PDF

Computationally Efficient Polarizable MD Simulations: A Simple Water Model for the Classical Drude Oscillator Polarizable Force Field.

J Phys Chem Lett

January 2025

University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States.

An improvement in the computational efficiency of polarizable force field simulations is made through the development of a polarizable Drude water model, SWM3, in combination with the use of Lennard-Jones Particle Mesh Ewald (LJPME) for the treatment of long-range LJ interactions. The experimental bulk properties, density, heat of vaporization, dielectric constant, and self-diffusion constant of the SWM3 model are accurately replicated at ambient condition. The temperature dependence of the bulk properties is also captured except for the density.

View Article and Find Full Text PDF

Aim: The aim of this literature review was to determine if a consensus could be reached on whether amblyopia treatment causes distress to patients and/or their guardians, and if so, establish the impact of this reported psychological distress upon paediatric patients and/or their parents/guardians.

Methods: A systematic review of the literature was conducted of all publications written in English. Search terms included both MeSH terms and alternatives related to amblyopia and psychological distress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!