A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules. | LitMetric

iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules.

J Chem Inf Model

Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina.

Published: June 2022

The clustering of small molecules implies the organization of a group of chemical structures into smaller subgroups with similar features. Clustering has important applications to sample chemical datasets or libraries in a representative manner (e.g., to choose, from a virtual screening hit list, a chemically diverse subset of compounds to be submitted to experimental confirmation, or to split datasets into representative training and validation sets when implementing machine learning models). Most strategies for clustering molecules are based on molecular fingerprints and hierarchical clustering algorithms. Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). In a benchmarking exercise, the performance of both clustering methods has been examined across 29 datasets containing between 100 and 5000 small molecules, comparing these results with those given by two other well-known clustering methods, Ward and Butina. iRaPCA and SOMoC consistently showed the best performance across these 29 datasets, both in terms of within-cluster and between-cluster distances. Both iRaPCA and SOMoC have been implemented as free Web Apps and standalone applications, to allow their use to a wide audience within the scientific community.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.2c00265DOI Listing

Publication Analysis

Top Keywords

small molecules
16
irapca somoc
12
clustering small
12
clustering
10
molecular fingerprints
8
clustering methods
8
molecules
5
irapca
4
somoc development
4
development validation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!