Direct Electro Plasmonic and Optic Modulation via a Nanoscopic Electron Reservoir.

Phys Rev Lett

School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China.

Published: May 2022

Direct electrical tuning of localized plasmons at optical frequencies boasts the fascinating prospects of being ultrafast and energy efficient and having an ultrasmall footprint. However, the prospects are obscured by the grand challenge of effectively modulating the very large number of conduction electrons in three-dimensional metallic structures. Here we propose the concept of nanoscopic electron reservoir (NER) for direct electro plasmonic and electro-optic modulation. A NER is a few-to-ten-nanometer size metal feature on a metal host and supports a localized plasmon mode. We provide a general guideline to construct highly electrically susceptible NERs and theoretically demonstrate pronounced direct electrical tuning of the plasmon mode by exploiting the nonclassical effects of conduction electrons. Moreover, we show the electro-plasmonic tuning can be efficiently translated into modulation of optical scattering by utilizing the antenna effect of the metal host for the NER. Our work extends the landscape of electro plasmonic modulation and opens appealing new opportunities for quantum plasmonics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.128.217401DOI Listing

Publication Analysis

Top Keywords

electro plasmonic
12
direct electro
8
nanoscopic electron
8
electron reservoir
8
direct electrical
8
electrical tuning
8
conduction electrons
8
metal host
8
plasmon mode
8
direct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!