2,5-Diketopiperazine (DKP) is a cyclic peptide composed of two amino acids and has been recently reported to exhibit various biological activities. DKPs have been synthesized using various methods. In chemical synthesis, a multi-step reaction requiring purification and racemization is problematic. Although enzymatic synthesis can overcome these problems, there has been no example of a general-purpose synthesis of DKPs with high titers. Therefore, we propose a chemoenzymatic method that can synthesize DKPs in a general-purpose manner with high efficiency under mild conditions. The adenylation domain of tyrocidine synthetase A (TycA-A) catalyzes the adenylation reaction of amino acids, and various amides can be synthesized by a nucleophilic substitution reaction with any amine. On the other hand, DKPs can be produced via intramolecular cyclization reactions from dipeptide esters. Based on these observations, we expected a one-pot synthesis of DKPs via dipeptide ester synthesis by TycA-A and cyclization reactions. This method enabled the synthesis of more than 128 types of DKPs without racemization. Importantly, the intramolecular cyclization reaction proceeded largely depending on the pH. In particular, the cyclization reaction proceeded well in the pH range of 6.5-9.5. Based on these results, we constructed a bioreactor with pH-stat for purified enzyme reaction; cyclo(L-Trp-L-Pro) was produced at 4.07 mM by controlling the reaction pH over time using this reactor. The DKPs obtained using this method will provide deeper insights into their structures and functions in future studies. KEY POINTS: • Adenylation enzyme enabled one-pot synthesis of arbitrary 2,5-diketopiperazine. • Little or no racemization occurred during 2,5-diketopiperazine synthesis. • Bioreactor with pH-stat for purified enzymes improved the reaction rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-022-12004-y | DOI Listing |
Chem Sci
January 2025
Institute of Chemistry, Academia Sinica 128 Academia Road, Section 2, Nankang Taipei 115201 Taiwan
Nanographenes and polycyclic aromatic hydrocarbons exhibit many intriguing physical properties and have potential applications across a range of scientific fields, including electronics, catalysis, and biomedicine. To accelerate the development of such applications, efficient and reliable methods for accessing functionalized analogs are required. Herein, we report the efficient synthesis of functionalized small nanographenes from readily available iodobiaryl and diarylacetylene derivatives a one-pot, multi-annulation sequence catalyzed by a single palladium catalyst.
View Article and Find Full Text PDFNanoscale
January 2025
Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
Tunable optical properties exhibited by semiconductor nanocrystals (NCs) in the near infrared (NIR) spectral region are of particular interest in various applications, such as telecommunications, bioimaging, photodetection, photovoltaics, . While lead and mercury chalcogenide NCs do exhibit exemplary optical properties in the NIR, Cu-In-Se (CISe)-based NCs are a suitable environment-friendly alternative to these toxic materials. Several reports of NIR-emitting (quasi)spherical CISe NCs have been published, but their more complex-shaped counterparts remain rather less explored.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China.
Polysaccharide-based metal-organic frameworks have attracted widespread attention due to their combination of the biocompatibility and flexibility of polysaccharides. Cyclodextrin are interesting bio-ligands in the construction of polysaccharide-based MOFs. Conventional methods for preparing cyclodextrin metal-organic frameworks (CD-MOFs) are often time-consuming and inefficient.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Institute of Science and Engineering, Kanazawa University, Kakuma machi, Kanazawa 920 1192, Japan. Electronic address:
Lignocellulosic biomass-based plastics provide a sustainable alternative to petroleum-based plastics by converting agricultural by-products into value-added materials, promoting a circular economy. This study investigates the development of thermoplastics from sugar beet pulp (SBP), a by-product rich in cellulose and pectin. A one-pot direct transesterification process was used to fully substitute hydroxy groups in SBP with acyl chains of varying lengths (C2-C10), achieving up to 96 % substitution.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China. Electronic address:
Cuproptosis shows great prospects in cancer treatments. However, insufficient intracellular copper amount, low-level redox homeostasis, and hypoxic tumor microenvironment severely restrict cuproptosis efficacy. Herein, hydrazided hyaluronan-templated decorated CuO-doxorubicin (CuDT) nanodot clusters (NCs) are developed for efficient doxorubicin (DOX)-sensitized cuproptosis therapy in breast cancer via a three-pronged strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!