A cold cathode X-ray tube was fabricated using a carbon nanotube (CNT) field electron emitter made by a free-standing CNT film which is composed of a highly packed CNT network. A lot of CNT bundles with a sharp tip are vertically aligned at the edge of the thin CNT film with a length of 10 mm and a thickness of 7 μm. The cold cathode X-ray tube using the CNT field emitter presents an extremely high tube current density of 152 A/cm (corresponding to tube current of 106.4 mA), the electron beam transmittance of 95.2% and a small focal spot size (FSS) of 0.5 mm. In addition, the cold cathode X-ray tube also shows stable lifetime during 100 000 shots. High emission current density of the cold cathode X-ray tube is mainly attributed to a lot of electron emission sites at an edge of the CNT film. The small FSS is caused by an ensemble of the CNT field electron emitter made by a free-standing thin CNT film and the optimized curve-shape elliptical focusing lens. Based on obtained results, the cold cathode X-ray tube can be widely used for various X-ray applications such as medical diagnosis systems and security check systems in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c02233DOI Listing

Publication Analysis

Top Keywords

cold cathode
24
cathode x-ray
24
x-ray tube
20
cnt film
16
field electron
12
electron emitter
12
cnt field
12
cnt
9
carbon nanotube
8
emitter free-standing
8

Similar Publications

Prognostic role of aetiological agent vs. clinical pattern in candidates to lead extraction for cardiac implantable electronic device infections.

Sci Rep

December 2024

Department of Medical and Surgical Sciences, Institute of Cardiology, University of Bologna, Policlinico S.Orsola-Malpighi, via Massarenti 9, Bologna, 40138, Italy.

Cardiac implantable electronic devices infections (CIEDI) are associated with poor survival despite the improvement in transvenous lead extraction (TLE). Aetiology and systemic involvement are driving factors of clinical outcomes. The aim of this study was to explore their contribute on overall mortality.

View Article and Find Full Text PDF

Interfacial functionalization and capillary force welding of enhanced silver nanowire-cellulose nanofiber composite electrodes for electroluminescent devices.

Int J Biol Macromol

December 2024

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.

The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.

View Article and Find Full Text PDF

Synthesis of microbial fuel cell (MFC) cathode catalysts using corn straw with natural multi-channel structure is an useful measure for developing sustainable energy sources and making creative use of agricultural waste. The catalytic performance of nanomaterial catalysts in the oxygen reduction reaction (ORR) is clearly influenced by porosity and channel structure. Mesopores usually contribute to the enhancement of reaction kinetics and mass transfer.

View Article and Find Full Text PDF

The interface issue poses a limitation on the fast charging of solid-state batteries (SSBs), with the high-impedance non-Faraday electric field serving as a pivotal factor. However, the mechanism of fast-charging capability degradation triggered by the dynamic evolution of non-Faraday electric fields remains unclear due to the lack of particle-scale nondestructive detection techniques. Here, we dissect the generation and elimination processes of non-Faradaic electric field in segments using the developed operando cryogenic transmission X-ray microscopy (Cryo-TXM).

View Article and Find Full Text PDF

Integrated thermal management-sensing-actuation functional artificial muscles.

Mater Horiz

November 2024

Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China.

Article Synopsis
  • Electrothermal-driven polymer fiber-based artificial muscles are gaining attention for their affordability and high energy output but face limitations due to ineffective cooling methods, particularly for larger sizes.
  • In this study, a new fluidic pump was developed using carbon nanotube electrodes, significantly enhancing cooling efficiency and allowing for quicker actuation and increased power density.
  • The research also included integrating a sensing layer for better control of muscle actuation and showcased potential applications in advanced materials, flexible components, and bionic designs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!