Mitigating fuel tank syndrome pelvic injuries - is there potential for rider worn protectors?

Traffic Inj Prev

Neuroscience Research Australia, Randwick, NSW, Australia.

Published: January 2023

Objective: The aim of this study was to investigate the feasibility of rider-worn pelvis protection for mitigating injury risk when contacting the motorcycle fuel tank in a crash.

Methods: A newly developed test apparatus was designed and constructed to simulate the interaction between a rider's pelvis and the motorcycle fuel tank in a frontal crash. Impacts were performed at a velocity of 18 km/h into four motorcycle fuel tanks. Further testing used a rigid fuel tank surrogate and the pelvis surrogate in an unprotected condition and with a series of impact protector prototypes. A subset of prototype samples was also tested at varying tank angles (30°, 37.5°, 45°) and impact speeds (8.5 km/h, 13 km/h, 18 km/h). Analysis of variance was used to determine whether the protector prototypes reduced pelvis response compared to unprotected.

Results: Resultant peak pelvis acceleration was reduced by three pelvis impact protector prototypes compared to an unprotected condition. The reduction in peak acceleration occurred without a significant change in the peak pelvis rotational velocity. The pattern of protector performance was consistent at varying fuel tank angles but only reduced the pelvis response at the highest impact speed tested of 18 km/h.

Conclusions: The results indicate that there may be potential for using pelvis impact protection to mitigate injury risk by absorbing and/or distributing impact energy that would otherwise be transmitted to the rider's pelvis. However, due to the current paucity in understanding of pelvis biomechanics to anteroposterior loading, it is unknown whether the pelvis acceleration reductions achieved would prevent injury.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15389588.2022.2072834DOI Listing

Publication Analysis

Top Keywords

fuel tank
20
pelvis
12
motorcycle fuel
12
protector prototypes
12
injury risk
8
rider's pelvis
8
unprotected condition
8
impact protector
8
tank angles
8
reduced pelvis
8

Similar Publications

Contrasting Summertime Trends in Vehicle Combustion Efficiency in Los Angeles, CA and Salt Lake City, UT.

Environ Sci Technol

January 2025

Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States.

Policy interventions and technological advances are mitigating emissions of air pollutants from motor vehicles. As a result, vehicle fleets are expected to progressively combust fuel more efficiently, with a declining ratio of carbon monoxide to carbon dioxide (CO/CO) in their emissions. We assess trends in traffic combustion efficiency in Los Angeles (LA) and Salt Lake City (SLC) by measuring changes in summertime on-road CO/CO between 2013 and 2021 using mobile observations.

View Article and Find Full Text PDF

Premise: Considering rapidly changing fire regimes due to anthropogenic disturbances to climate and fuel loads, it is crucial to understand the underpinnings driving fire-adapted trait evolution. Among the oldest lineages affected by fire is Coniferae. This lineage occupies a variety of fire prone and non-fire prone habitats across all hemispheres and has four fire-adapted traits: (1) thick bark; (2) serotiny; (3) seedling grass stage; and (4) resprouting ability.

View Article and Find Full Text PDF

In order to solve the problem of poor adaptability and robustness of the rule-based energy management strategy (EMS) in hybrid commercial vehicles, leading to suboptimal vehicle economy, this paper proposes an improved dung beetle algorithm (DBO) optimized multi-fuzzy control EMS. First, the rule-based EMS is established by dividing the efficient working areas of the methanol engine and power battery. The Tent chaotic mapping is then used to integrate strategies of cosine, Lévy flight, and Cauchy Gaussian mutation, improving the DBO.

View Article and Find Full Text PDF

Motor vehicles emit most Malaysian PAHs in particulate matter of 2.5 μm (PM2.5-bound PAHs).

View Article and Find Full Text PDF

Fuel cell-based electric vehicles (EVs) are gaining popularity in the automotive industry due to strict carbon emissions and fuel efficiency regulations. Fuel cells have inherently low voltage characteristics, making it challenging to interface with EV drive systems. This work proposes a unique topology implementing a non-isolated high step-up DC-DC converter to integrate the Proton Exchange Membrane Fuel (PEMF) cell with the EV motor drive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!