Schizophyllum commune is a mushroom-forming fungus well-known for its ability to degrade lignocellulosic materials and production of schizophyllan, a high added-value product for cosmeceutical, pharmaceutical, and biomaterial industries. Conventionally, schizophyllan is produced by submerged fermentation using glucose as a carbon source. In this work, we demonstrate that alkaline pretreated bagasse can be used by Schizophyllum commune as an alternative carbon source for the production of schizophyllan. The influence of different factors was investigated including cultivation time, biomass loading, and culturing media component and a co-product correlation model was proposed. In this lab-scale study, a yield of 4.4 g/L of schizophyllan containing 89% glucose was achieved. In addition to schizophyllan, the cellulolytic enzymes co-produced during this process were isolated and characterized and could find applications in a range of industrial processes. This demonstrates the potential of using agricultural waste as a cheaper alternative feedstock for this biorefinery process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bbb/zbac091 | DOI Listing |
J Fungi (Basel)
December 2024
College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China.
is one of the widely produced edible fungi worldwide. It is rich in γ-aminobutyric acid (GABA), a non-protein amino acid with important physiological functions in humans. To investigate the functions of key genes in the GABA metabolic pathway of , we isolated the monokaryon from the factory-cultivated strain and then sequenced and assembled the genome using the PacBio Sequel and Illumina NovaSeq sequencing platforms.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, China.
Viruses
November 2024
State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
Strain IBc-114 was isolated from a gray mold lesion and was identified as the fungus In this strain, two mycoviruses, Schizophyllum commune RNA virus 1 (ScRV1, C_AA053475.1) and Botrytis cinerea mitovirus 9 strain IBc-114 (BcMV9/IBc-114, C_AA053476.1), were isolated and characterized.
View Article and Find Full Text PDFMicroorganisms
October 2024
State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
Fungi inhabiting deep subseafloor sediments have been shown to possess anaerobic methane (CH) production capabilities under atmospheric conditions. However, their ability to produce CH under in situ conditions with high hydrostatic pressure (HHP) remains unclear. Here, 20R-7-F01, isolated from ~2 km below the seafloor, was cultured in Seawater Medium (SM) in culture bottles fitted with sterile syringes for pressure equilibration.
View Article and Find Full Text PDFGenes Cells
January 2025
Department of Botany, National Museum of Nature and Science (Kahaku), Tsukuba, Japan.
Schizophyllum commune, a common wood-decay mushroom known for its extremely high genetic variation and as a rare cause of human respiratory diseases, could be a promising model fungus contributing to both biology and medicine. To better understand its phenotypic variation, we developed an image analysis system that quantifies morphological and physiological traits of mycelial colonies in Petri dishes. This study evaluated growth of six wild and one clinical isolates of Japanese S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!